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Food technologies and developing countries: a processing method
for making edible the highly toxic cassava roots
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Abstract

In addition to be a possible solution to the food crisis becoming a pro-
ductive model to follow, the development of a process and/or a technique of
food production in a developing country could create advantages from an
industrial point of view due to the use of alternative raw materials, which
have a potentially high competitiveness. In developing countries, agricul-
ture is able to offer a variety of products making up the daily diet and pro-
vide products with potential that could make up for many nutritional defi-
ciencies to which resident populations are subject. Food technology appli-
cations on cereals, tubers, roots, fruits, and by-products from related
processes are reported at aiming to obtain finished and semi-finished
foods and/or basic ingredients meeting the food safety criteria. In detail,
this study aims to generate a processing method for the white bitter roots
collected in a rural area of Burundi with a cyanogenic glycoside content
>400 mg cyanide equivalent/kg dry weight. A standardised procedure con-
sisting of peeling, grating, and oven drying at 60°C, with or without fer-
mentation with Saccharomyces cerevisiae, was successfully tested.

Introduction

Feeding the Planet. Energy for Life, the theme chosen for the Expo
2015 is emblematic to give an idea of the main problems dealing with
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in the next years. By 2050 the world’s population will reach 9.1 billion,
34 percent higher than today. Nearly all of this population increase will
occur in developing countries. In order to feed this larger, more urban
and richer population, food production (net of food used for biofuels)
must increase by 70 percent. Annual cereal production will need to rise
to about 3 billion tons from 2.1 billion today and annual meat produc-
tion will need to rise by over 200 million tons to reach 470 million tons
(FAO, 2009). But increasing production is not sufficient to achieve
food security, although it has improved as high income and agricultur-
al growth has reduced the number of undernourished people from 21%
in 1990 to 12% today (OECD-FAO, 2013).

The two major challenges to be address in order to contain the prob-
lems of food crisis and food security respectively are the reduction of
food wastes in developed countries and the efforts to be done to ration-
ally transform the agricultural resources in developing countries (FAO,
2011). Each year about 1.3 billion tons, i.e. one-third of all food pro-
duced for human consumption in the world is lost or wasted.
Industrialized and developing countries dissipate roughly the same
amount of food as wastes and losses respectively. Food loss refers to a
decrease in mass (dry matter) or nutritional value (quality) of food
that was originally intended for human consumption. These losses are
mainly caused by inefficiencies in the food supply chains, such as poor
infrastructure and logistics, lack of technology, insufficient skills,
knowledge and management capacity of supply chain actors, and lack
of access to markets. In addition, natural disasters play a role. Food
waste refers to food appropriate for human consumption being dis-
carded, whether or not after it is kept beyond its expiry date or left to
spoil. Often this is because food has spoiled but it can be for other rea-
sons such as oversupply due to markets, or individual consumer shop-
ping/eating habits. Food wastage refers to any food lost by deteriora-
tion or waste. Thus, the term wastage encompasses both food loss and
food waste. Obviously, this food wastage represents a missed opportu-
nity to improve global food security and to mitigate environmental
impacts generated by agriculture (FAQ, 2011).

Agriculture and agribusiness together are projected to be a US$ 1
trillion industry in Sub-Saharan Africa by 2030 (compared to US$ 313
billion in 2010), and they should be at the top of the agenda for eco-
nomic transformation and development. Successful agribusiness
investments in turn stimulate agricultural growth through the provi-
sion of new markets and the development of a vibrant input supply sec-
tor (World Bank, 2013).

Practical application of food technology
in developing countries gaining food security:
some examples of food process development

Little is known about the potential agricultural resources that are
available in developing countries, where about 2 billion of people suf-
fer the so-called hidden undernutrition. This term refers to the under-
nutrition provoked by micronutrient deficiencies although in presence
of enough macronutrients satisfying for energy needs (FAO, 2000). A
better knowledge of the nutritional properties of the traditional crops
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in developing countries helps to realise food technology processes
aimed at transforming, making safe and preserving the food/nutrition-
al/sensory value of the food product.

In sub-Saharan Africa traditional cereals such as uburo, a small and
sweet sorghum, and elezine, commonly known as finger millet, are
characterised by preservation properties and good resistance to hydric
stress (Guiro et al., 2010). Elezine is used to make bread, soups, cakes,
but is also employed in the production of beer, which is a source of
nitrogen compounds and polyphenols (Fumi et al., 2009, 2011) for this
population. The most common tubers are cassava and potatoes and
finally the most important legumes are beans and peas (Guiro et al.,
2010; Lambri et al., 2011c). Among tropical fruits (avocado, mango,
papaya, banana, pineapple, passion fruit, efc.), papaya is an excellent
source of vitamin A and C, it also contains thiamine, riboflavin, miner-
als, calcium, iron, potassium, magnesium and sodium (USDA, 2011).

A sustainable food process may reduce post-harvest losses in South
East Asian Countries (Boselli, 2012) or may create rural development in
Burundi giving rise to an avocado oil mill throughout an integrated
approach (Lambri ef al., 2010). On the other hand, the process develop-
ment aimed at producing dehydrated crude papain from fresh papaya
pulp with planning lab-scale, and pilot-scale trials (Lambri et al., 2014b)
is an example of the production of high-value added ingredients which
may be exploited in industrialized countries in order to get income for
moving on the production in the developing country. In this regard, other
application is the production of starch, maltodextrins and glucose syrup
from cassava using the enzymatic hydrolysis steps (Lambri et al., 2011a,
2011b, 2014a). Other issue related to fruit processing is the recovery of
wastes so reducing environmental pollution and fruit losses, and making
the process more sustainable. An example in this framework regards the
process of pineapple wastes into vinegar, which may be used as dressing,
food preservative, and disinfectant (Roda et al., 2014). Finally the study
aimed to obtain a baked product using ingredients found in Burundi
(flour, cereals and legumes, papaya and avocado fruit, avocado oil), sug-
gests that, in addition to sensory pleasantness, a nutritional composition
can also be reached according to UN guidelines for the realization of bis-
cuits for emergency food situations (Lambri ef al., 2013b). Furthermore,
the results obtained from a preliminary approach to fortify some flour,
confirm the success of this technique in the integration of mineral com-
ponents (Lambri et al., 2013c).

Practical application of food technology in developing
countries gaining food safety: a processing method
for making edible the highly toxic cassava roots

The cassava (Manihot esculenta Crantz) crop is extensively culti-
vated in the tropics, where approximately 800 million people rely on
it as a staple food (FAO/IFAD, 2000). The major factor limiting its food
value is the presence of linamarin and lotaustralin, two cyanogenic
glycosides (CNG) that liberate glucose and cyanohydrins upon hydrol-
ysis by the endogenous enzyme linamarase. CNGs are distributed
widely throughout the plant, with large amounts in the leaves and the
root cortex and generally smaller amounts in the root parenchyma
(Montagnac et al., 2009). The roots of different cultivars may be clas-
sified as low (<50 mg/kg), medium (50-100 mg/kg) and high CN
(>100 mg CN eq/kg) varieties (Nambisan, 2011). Moreover, several
studies indicate that bitterness is related to the CNG content, and this
affects the palatability of the roots and related flours (Chiwona-
Karltun et al., 2004). Because the consumption of cassava products
with high CNG levels may cause acute intoxication, aggravate goitre
(Mlingi et al., 1992) and, in severe circumstances, induce paralytic
diseases (Tylleskar et al., 1992) the Codex Alimentarius Commission
of the Food and Drug Administration/World Health Organization
(CCFO, 1981; FAO/WHO, 1991) set safe levels of cyanogens in cassa-
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va food products at 10 mg/kg dry weight (d.w.).

Processing has been recognised as the most efficient way of control-
ling cassava cyanogens in the short term, and a wide diversity of pro-
cessing methods are used in cassava-consuming communities
(Bradbury, 2006; Essers et al., 1996; Mlingi et al., 1995). Sun-drying
cassava chips with or without prior grating/pounding removes 80% to
95-99% of CNGs (Nambisan and Sundaresan, 1985). Oven-drying at
60°C with prior yeast fermentation reduced the cyanide levels by more
than 90%, generating safe cassava according to the FAO/WHO amend-
ments (1991) if the initial cyanide level of roots did not exceed 200
mg/kg d.w. (Lambri et al., 2013a). Particularly for varieties that are
high in CNGs, the most popular and efficient processing method for
their removal is fermentation (Lambri et al., 2013a; Nambisan, 2011).
Lactic acid bacteria and yeasts have been identified as the predominant
microorganisms involved in cassava fermentation (Oboh and
Akindahunsi, 2003; Okafor et al., 1998; Oyewole, 2001). Examples of
fermented foods include gari, fufu, lafun, casaba, and farina, in which
CNG retention can occur with inadequate processing (Montagnac et
al., 2009; Westby and Choo, 1994). Taking into account the retention of
CNGs, the initial cyanide level of the root for the most efficient process-
ing method (involving grating, fermentation, efc.) may not exceed 250
mg/kg (Cardoso et al., 2005). Because the development of improved
methods for the detoxification of cassava with high CNG content
remains a challenging problem, this study aims to generate a process-
ing method for the white bitter roots collected in a rural area of
Burundi with a CNG content >400 mg CN eq/kg d.w. A standardised
procedure consisting of peeling, grating, and oven drying at 60°C, with
or without fermentation with selected cultures of Saccharomyces cere-
visiae, was tested.

Materials and methods

Cassava samples

Cassava roots were collected directly from a rural market in Gitega,
Burundi. Based on the taste properties related to their parenchyma
cyanide content (Chiwona-Karltun et al., 2004), all the samples were
bitter white cassava. The roots were peeled and cut with a knife. They
were mixed together and grated into small sticks (10 mm length x 5
mm width x 1 mm thickness) with a Kenwood Chef Major Titanium
KMO020 equipped with a Vegetable Processor AT340 supplied by De
Longhi Appliances s.r.l. (Treviso, Italy).

Drying tests

The drying tests involved drying grated cassava samples in an oven
for 8,24 or 72 h at a unique temperature of 60°C, which was reported
to be highly effective in a recent study (Lambri et al., 2013a). An elec-
tric convection oven with a humidifier (Mod. 4XGN1/1 supplied by
Virtus s.r.l., Pavia, Italy) and 1 m/s forced airflow was used. Thin layers
of grated cassava samples were oven dried with and without previous
triplicate fermentation processes with selected cultures.

Microbial samples and fermentation tests

The microbial samples were composed of of active dry S. cerevisiae
yeasts for oenological features (AEB, Brescia, Italy) grown in Malt
Extract Broth. The solution used for yeast nutrition was Yeast Nitrogen
Base (OXOID, Hampshire, UK). Fermentation tests were performed at
aratio of 1000 g cassava/1500 mL of water in open containers under the
same conditions applied by Lambri et al. (2013a). A fermentation time
of 48 h and a temperature of 30+2°C were applied. For each trial, an
uninoculated grated cassava sample was also maintained.
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Proximate analysis and cyanide determination
of cassava samples

Moisture, ash, crude fibre, and the protein content of the cassava
root samples were determined (AOAC, 1995). The tannin content was
evaluated (Singleton et al., 1998), and the CNG content was indirectly
measured (Bradbury et al., 1999) using a picrate paper kit, linamarase
(50 EU) and linamarin (BDH, Milan, Italy). The method involves the
immobilisation of linamarase in a small filter paper disc also loaded
with phosphate buffer at pH 8. The disc is placed in a small vial, and 100
mg of cassava is added with 0.5 mL water. A strip of yellow picrate
paper, previously prepared, is inserted, and the vial is capped. After 24
h at 25-35°C, the picrate paper was separated from the plastic strip, and
the colour was eluted from the filter paper in 5.0 mL water for approx-
imately 30 min. The absorbance of the solution is measured at 510 nm
against a blank that contained a yellow solution produced from a
picrate paper not exposed to HCN. The toxicity of the untreated cassa-
va roots and samples after peeling-grating, fermentation, and drying is
expressed as mg CN eq/kg d.w.

Statistical analysis

All the data were subjected to analysis of variance (ANOVA) via
Microsoft Excel 2010 for Windows7. Mean comparisons were performed
using Student’s t-test and the post-hoc comparison Tukey’s test with
the significant level established at P<0.05. The statistics were prepared
using IBM SPSS Statistics 20 (IBM Corporation, New York, NY, USA).

Results and discussion

Effect of peeling and grating on cyanide abatement

Cassava roots were characterised by levels of moisture (47.5+2.1%
wiw), ash (1.77x0.60% w/w d.w.), fibre (3.54+0.68% w/w d.w.), tannins
(0.34+0.03 mg/100 g d.w.), and proteins (3.36+0.77% w/w d.w.), con-
firming the proximate analysis previously reported (Lambri et al.,
2013a; Charles et al., 2005; Sarkiyayi and Agar, 2010). The initial toxi-
city level of the roots was 593+89 mg CN eq/kg d.w., and the level
detected after peeling and grating was 170+48 mg CN eq./kg d.w.

The attempt to correlate the cyanide reduction produced by peeling
and grating as a function of the cyanide content in the unpeeled whole
roots is reported in Figure 1. For the investigated bitter white cassava
roots, the maximum degree of cyanide abatement (75.2+7.4%) was
observed for samples with cyanide content between 500 and 667 mg CN
eq/kg d.w. For the highest (700 and 732 mg CN eq./kg d.w.) and the low-
est (442 mg CN eq/kg d.w.) initial cyanide values, the reductions pro-
duced by peeling and grating were significantly lower (62.2+6.3%).

The operations of peeling and grating were the first substantial step
of the process to lower cassava toxicity (—71.3+6.9% of initial value)
because CNGs are distributed in large amounts in the skin (Montagnac
et al., 2009). Cutting and grating enhances intimate contact between
linamarin and the hydrolysing enzyme linamarase, which promotes
rapid breakdown of linamarin to hydrogen cyanide gas that escapes
into the air in the finely divided wet parenchyma (Cardoso et al., 2005;
Montagnac et al., 2009). Moreover, grating provides a higher surface
area for both drying and fermentation and allows retting to be complet-
ed more quickly than when whole roots are used (Mlingi et al., 1992;
Sakala et al., 2007). It is a valuable method for further investigation,
especially in eastern and southern Africa, where attempts to introduce
this method failed because of the cost and availability of the processors
(Cardoso et al., 2005; Nebiyu and Getachew, 2011).

OPEN aACCESS

[Italian Journal of Agronomy 2014; 9:573]

Drying tests with and without fermentation

Figure 2 summarises the cyanide levels measured after drying the
grated cassava at 60°C for three different lengths of time
and shows that very high reductions (close to 95%) of the initial
cyanide contents occurred even with short (8 h) drying periods. The
detoxification was higher than that reported by Iwuoha et al. (1997),
who observed a total cyanide reduction of 81.5% with oven drying at
50°C for <24 h. Despite the promising results (Figure 2) already
observed in a recent study (Lambri et al., 2013a), the selected temper-
ature of 60°C is near the critical limit for cyanide retention because
linamarase activity is inhibited at temperatures above 55°C
(Nambisan, 2011). The increase in drying temperature (50-80°C) has
long been known to be accompanied by an accumulation of linamarin
in dried cassava (Iwuoha et al., 1997; Nambisan and Sundaresan,
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Figure 1. Cyanide reduction produced by peeling and grating vs
the initial cyanide content in unpeeled cassava roots. Each point
represents the meantstandard deviation (N=6). Different letters
indicate significantly different values according to Tukey’s posz-
hoc comparison test (P<0.05).
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Figure 2. Cyanide reduction in peeled cassava roots produced
after 8, 24 and 72 h of oven drying at 60°C. Each point repre-
sents the meanztstandard deviation (N=6). Different letters indi-
cate significantly different values according to Tukey’s post-hoc
comparison test (P<0.05).
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1985). In thin cassava pieces, because the surface-to-volume ratio is
great, the drying rate is high (Essers ef al., 1996). In this study, a low
forced airflow (1 m/s) was applied, allowing substantial detoxification
(Figure 2). This is primarily due to a reduced surface pre-drying phe-
nomenon, with a longer contact period between the glucosidase and
the glucoside in aqueous medium (Essers et al., 1996). As a conse-
quence, oven drying with an extended time span where the enzyme-
substrate interaction is enhanced by moisture retention represents a
potential method to increase the effectiveness of CNG removal.

The CNG abatement was highest in the first 8 h of the oven-drying
process and decreased slightly over the following hours in a logarithmic
trend (Figure 2), showing a similar decrease in the linamarin levels
over time as in the work of Essers et al. (1996). This pattern may be
explained here as these authors explained CNG reduction during sun
drying. The enzymatic breakdown of a substrate in solution is either a
first or higher order reaction, resulting in a negative exponential curve
of the CNG level in grated cassava. A higher initial substrate level
therefore logically results in a steeper decline than the lower level pres-
ent after some time (Figure 2). After applying the sequential process
steps of peeling-grating and 8 h-oven-drying at 60°C to another aliquot
of the white bitter root sample with 581+28 mg CN eq./kg d.w., levels of
135+18 mg CN eq/kg d.w. in peeled grated cassava and 40+11 mg CN
eq/kg d.w. after oven-drying were detected. Although consistent with
other reports (Iwuoha ef al., 1997), the peeling-grating-oven-drying
sequence was not enough to ensuring the safety of the tested bitter
white cassava roots according to the FAO/WHO guidelines (1991). As a
consequence, selected cultures of S. cerevisiae used in a previous study
(Lambri et al., 2013a) were applied at 30+2°C for 48-h fermentation of
grated cassava before the oven drying step.

The fermentation promoted a significant CNG reduction. While the
cyanide content of the uninoculated grated cassava was 169+12 mg CN
eq/kg d.w., the inoculation of S. cerevisiae caused the cyanide content
in the inoculated grated cassava to drop by 35% to 109+9 mg CN eq/kg
d.w. Although natural flora has the ability to hydrolyse linamarin, these
data confirmed the results of other studies regarding the fermentation
of cassava roots soaked in water, in which microbial growth was shown
to be essential for the efficient elimination of cyanogens (Okafor et al.,
1998; Westby and Choo, 1994). Moreover, our results highlighted the
efficiency of the yeast S. cerevisiae in removing CNGs (Lambri et al.,
2013a; Oboh and Akindahunsi, 2003), which may be favoured by the
increased acidity of the medium (Oyewole, 2001) over the 48 h of fer-
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Figure 3. Cyanide content in unpeeled cassava roots, after peel-
ing and grating, after 48-h fermentation with Saccharomyces
cerevisiae, and after 8 h of oven drying at 60°C. Each bar repre-
sents the meanzstandard deviation (N=6). Different letters on
top of the bar indicate significantly different values according to
Tukey’s post-hoc comparison test (P<0.05).
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mentation. The addition of this yeast has been proven to produce a
marked decrease in the level of hydrocyanic acid and other toxicants
(Antai and Nkwelang, 1998) and is also a tool for enriching fermented
cassava mash with crude proteins (Antai, 1990).

Finally, the sequential application of all the steps (peeling, grating,
48 h fermentation with S. cerevisiae, 60°C oven drying) to duplicate
cassava sample aliquots with 716+42 mg CN eq/kg d.w. in unpeeled
roots enabled the reduction of the cyanide level to a final value of 15+5
mg CN eq/kg d.w., Ze., a 48-fold reduction (Figure 3), well within the
safe CNG levels set by FAO/WHO (1991). The effectiveness of this pro-
cessing method should be further tested by varying cassava root sam-
ples and processing times because the process sequence is often time-
dependent (Agbor-Egbe and Mbome, 2006).

Conclusions

The urgent shortage of raw materials, food and natural resources,
makes clear the need to find alternative resources in order to make up
for the global food requirements and achieve a balance between food
demand and supply both in developed and in developing countries. The
search for new resources should match the three issues of sustainabil-
ity: economic, environmental and social. Raising the necessary
resources at the global level and the promotion of economic and social
development of peoples in developing countries is the dual aim to be
got. The development of a process and/or a technique of food produc-
tion in a developing country, in addition to be a possible solution to the
food crisis becoming a productive model to follow, have to create advan-
tages from an industrial point of view. Alternative raw materials, which
have a potentially high competitiveness may be exploited and used by
the Western food industry. As like as food security, the food safety of
local crops is fundamental for producing both traditional foods and
ingredients. In this framework devoted process development aimed at
maximum reduction of the initial levels of toxic molecules in order to
meet the FAO/WHO requirements and ensuring the safety of final prod-
ucts are needed.
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