CPress

Italian Journal of A

nomy 2018; volume 13:

Assessing wheat spatial variation based on proximal and remote spectral

vegetation indices and soil properties

Lorenzo Barbanti,! Josep Adroher,'? Jiinior Melo Damian,!- Nicola Di Virgilio,*
Gloria Falsone,! Matteo Zucchelli,’ Roberta Martelli!

!Department of Agricultural and Food Sciences, University of Bologna, Italy; *Department of Chemical and
Agricultural Engineering and Agrifood Technology, University of Girona, Spain; 3Department of Soil
Science, ESALQ, University of Sio Paulo, Brazil; *Institute of Biometeorology, National Research Council,

Bologna, Italy; >Trimble Italia, Vimercate (MB), Italy

Abstract

Assessing the spatial variation of soil and crop properties is the
basis for site specific management of crop practices in precision
agriculture applications. To this aim, proximal and remote spectral
vegetation indices are increasingly replacing soil analysis. In this
study the spatial variation of soil properties, proximal and remote
spectral vegetation indices were compared in a winter wheat
(Triticum aestivum L.) crop grown in a 4.15 ha field in northern
Italy. Soil analysis (particle size distribution, pH, carbonates, C,
total N, available P, exchangeable cations and electrical conductiv-
ity) was geo-referentially carried out; the proximal indices chloro-
phyll content by N-Tester and normalised difference vegetation
index through GreenSeeker were determined in three dates during
stem elongation; the remote indices PurePixel™ chlorophyll index
and PurePixel™ vegetation index were determined through the
Landsat 8 satellite in three dates during the same wheat stage. Dry
biomass yield (DBY), grain yield (GY) and yield components were
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determined at harvest. Soil, proximal and remote data were submit-
ted to principal component analysis (PCA), and the retained PCs
were clustered to delineate areas at low, intermediate and high
yield potential, based on soil parameters (CLU,), proximal
(CLU,), and remote vegetation indices (CLU;). DBY and GY were
significantly correlated with several soil parameters and vegetation
indices. Spatial distribution of soil and crop data consistently
depicted a low performing area (GY<3 Mg ha!) and a high per-
forming one (GY>8 Mg ha'). CLUj, determined a lower GY dif-
ference between low and high performing area (+60%), compared
to CLU,; and CLUj; (almost +100%). In CLU,, and CLU,; the low
and high performing area were of similar size (25 and 29% for the
two respective areas in CLUs,; 25 and 33% in CLU,;), whereas in
CLUj they were quite different (16 and 46%). Lastly, yield poten-
tial levels determined by vegetation indices (CLU,; and CLUy)
exhibited a better degree of agreement with DBY and GY levels,
than soil parameters (CLUg). In exchange for this, the above
referred soil parameters are quite consistent in time, allowing soil
data to be used for more years. On concluding, PCA followed by
clustering resulted in a robust delineation of field areas at different
yield potential. This is the premise for developing research driven
strategies of practical use.

Introduction

The sustainable improvement of wheat production is strongly
associated with the supply of crop inputs in a frame of precision
agriculture (PA) practices (Diacono et al., 2013; Yousefi and
Razdari, 2015). This means supplementing the wheat crop with
the amount of each input that maximises yield in light of spatial-
ly- and temporally-variable growth conditions. Thus, different
areas of a field are managed in a specific way to achieve full yield
potential.

This principle is faced by many difficulties in PA implementa-
tion. Therefore, despite early enthusiasm following the first applica-
tions in the 1980’s (Stafford, 2000), PA has not achieved widespread
adoption (Yousefi and Razdari, 2015). In fact, although consider-
able effort has been spent by research and extension services in
many countries, only a portion of farmers is willing to apply any
type of PA technologies (Reichardt and Jiirgens, 2009).

Implementation of PA was initially based on the utilisation of
existing machinery, by adding controllers and global navigation
satellite system to enable vehicle guidance and self-steering. This
was due to the financial benefits that were readily achieved with-
out the need for much, or any, decision support system or compo-
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nent integration (McBratney et al., 2005). To date, the leading
application of PA is the site-specific supply of fertilisers by means
of variable rate spreaders (Chen et al., 2014).

PA adoption is affected by an insufficient appraisal of crop
temporal variation, and the need of a suitable decision support sys-
tem (McBratney et al., 2005). Moreover, the integration of data
obtained from soil and crop sensing into decision support systems
has not achieved univocal consensus (Zhang and Kovacs, 2012).
This urges for the development of simple strategies to support the
decision making process. In turn, this will allow farmers to over-
come the background noise originating from data collection, anal-
ysis and management, while concurrently dealing with the techni-
cal advances in crop sensing, yield monitoring and computer pro-
cessing (Mulla and Schepers, 1997; Lowrance et al., 2016).

The spatial variability of soil and crop properties is still largely
unknown even in cereals that, owing to their large surface, are best
suited for site-specific management (SSM). SSM allows a field to
be split into areas that express a relatively homogeneous combina-
tion of yield limiting factors, for which a single rate of a specific
crop input is appropriate (Fridgen et al., 2004; Chang et al., 2014;
Damian et al., 2016). The choice of the algorithm for delineating
such areas is another point of debate, although data clustering is a
widely accepted method, and fuzzy c-means algorithms are one of
the most common techniques for data clustering (Guastaferro et
al., 2010).

The cost and time needed to obtain the information to set up
homogeneous sub-field areas represent a constraint that is largely
responsible for the slow progress in SSM (Pierce and Novak, 1999;
Lowrance et al., 2016). Thus, alternative methods are sought to
replace crop records (Blackmore, 2000; Milne et al., 2012), soil
properties (Kitchen et al., 2005; Chang et al., 2014), and their
combination (Li et al., 2008; Mann et al., 2011), which are still
widely used at present.

The optical sensing of crop properties includes many methods
potentially serving this task. One of the most diffused is the assess-
ment of the normalised difference vegetation index (NDVI), which
is the ratio between the difference and the sum of canopy
reflectance in the near infra-red (NIR) (780 nm) and red (670 nm),
providing an indication of crop health and vigour (Tucker, 1979).
The NDVI has been widely used in the wheat crop to support
biomass and grain yield predictions (Erdle et al., 2011; Grohs et
al., 2011; Quebrajo et al., 2015; Bushong et al., 2016), assess opti-
mum N fertiliser doses (Macnack et al., 2014; Calvo et al., 2015;
Samborski et al., 2015), and for other uses as mapping crop areas
(Patil et al., 2010; Jin et al., 2016), and estimating water require-
ments (Chattaraj et al., 2013; Ozcan et al., 2014).

The NDVI is still at present the reference spectral vegetation
index, although limits have been evidenced compared to other
indices operating in the same wavebands (Erdle et al, 2011;
Samborski et al., 2015). Sometimes, better estimates of grain yield
and quality were obtained when NDVI was integrated by environ-
mental parameters as soil moisture, precipitation and cumulated
heat during wheat growth (Macnack et al., 2014; Bushong et al.,
2016). One of the drawbacks associated with NDVI assessed
through active optical sensors is the need to operate at, or near,
ground level. This involves the development of specific skills in
the management of optical sensors, mounted on a ground or aerial
(unmanned) vehicle. Owing to this, remote sensing from satellites
is gaining interest over proximal sensing from ground or low alti-
tude platforms. However, also remote sensing has weak points: the
influence of weather conditions during data acquisition, the spatial
and temporal scale, and the problems associated with processing
and evaluation of spectral images (Zhang and Kovacs, 2012). In
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exchange for this, the use of satellites operating in various wave-
bands of the visible and NIR originates a number of vegetation
indices being developed as potential substitutes for NDVI (Patil et
al., 2010; Basso et al., 2016).

Given the pending problems in the adoption of PA practices,
owing to the uncertainties in the assessment of wheat spectral
indices, this work addressed the study of proximal vs. remote vege-
tation indices, and soil properties, in the interpretation of wheat spa-
tial variation. The study was intended as a showcase for the method-
ology to study spatial variability and define homogeneous areas in a
year of survey using soil parameters vs. near and remote indices.

Materials and methods

Study area

The study was conducted in 2014 in the coastal plain near
Ravenna, Italy (44° 29’ N, 12° 07" E, 0 m a.s.l.). A 4.15 ha exper-
imental area (72x576 m) cultivated with winter wheat (7riticum
aestivum L.) was chosen within a larger field (ca. 20 ha) of the
Agrisfera Cooperative, using a GPS device (Garmin International
Inc., Olathe, KS, USA) to set borders. Wheat (cv. Aquilante) was
seeded in November 2013 on soil ploughed at 0.3 m depth.
Preceding crop was coriander. Wheat management was based on
the good practice for the specific crop: fertilisation consisted of
two top dress applications of 54 and 92 kg ha™! of N, respectively;
one herbicide spraying was carried out at tillering; one insecticide-
fungicide mixture was sprayed at heading.

Soil and crop data

Soil analysis

Soil samples (0-0.3 m depth) were taken on March 12, 2014 in
a 24-cell grid (48x36 m; cell size 1728 m?), which was established
with the CR-Campeiro 7 software (Giotto and Robaina, 2007).
Each sample was composed of four cores equally spaced from the
plot centre. The samples were oven dried at 40°C and ground to
pass a 2 mm sieve. The following parameters were assessed: parti-
cle size distribution (sand, silt and clay), pH, total carbonates
(CaCO0s), total organic carbon (C), total nitrogen (N), available P
(Olsen), exchangeable cations (K, Ca, Mg, Na), cation exchange
capacity (CEC), exchangeable sodium percentage (ESP), and elec-
trical conductivity (ECe). The analytical methods of the Italian
protocol for soil analysis (D.M. 13/09, 1999) were adopted, apart
from CEC that was determined by means of cobalt hexamine
trichloride (Orsini and Rémy, 1976, modified by Ciesielski and
Sterckeman, 1977), and C and N that were determined by dry com-
bustion (CHNS-O mod. EA 1110, Thermo Scientific GmbH,
Dreieich, Germany), using acetanilide as a standard for C and N
concentration.

Proximal sensing of spectral vegetation indices

Proximal indices were assessed in a 36-cell grid (3636 m; cell
size 1152 m?), using two hand held devices: i) the chlorophyll
meter N-Tester (NT) (Yara International ASA, Oslo, Norway),
which measures leaf transmittance in the red (650 nm) and infrared
(940 nm) wavelengths, indicating a numeric value that is propor-
tional to leaf chlorophyll content (Diacono et al., 2013); ii) the
active radiometer GreenSeeker (GS) (NTech Industries, Inc.,
Ukiah, CA, USA), which measures canopy reflectance in the red
(Rrep) (650+10 nm) and NIR (Ryz) (770 £15 nm) band, and calcu-
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lates NDVI as index of general crop status (Raun et al., 2001)
according to the formula: NDVI = (Ruiz-Rrep)/(Ryit Reep)-

Chlorophyll assessment with NT was carried out on the
youngest fully developed leaf at 14-day intervals from mid March
to mid June. NDVI appraisal with GS was performed concurrently.
For both indices, three dates from March 21 to April 24, 2014 were
retained for the present work, covering a range of wheat stages
from early stem elongation to heading (Table 1).

Remote sensing of spectral vegetation indices

Remote indices were based on the operational land imager
(OLI) multispectral sensor (15x15 m spatial resolution) of the
Landsat 8 satellite that has a revisiting frequency of 9-15 days. The
raw images were processed by Trimble Agriculture Division to
remove the interfering factors and produce pure spectral signa-
tures. Multiple spectral bands going from the visible to the near-
infrared spectral region were used, and the OLI scene was atmo-
spherically corrected through the application of a custom Trimble
Agriculture Division algorithm. Two indices were obtained by
means of calibration to ensure time comparisons, in the frame of
PurePixel™ vegetation maps: the PurePixel chlorophyll index
(PPCI) indicating chlorophyll content, and the PurePixel vegeta-
tion index (PPVI) that is related to general growth status. PPCI and
PPVI are the remote indices corresponding to the proximal indices
NT and GS, respectively. The images acquired in three dates from
March 15 to April 16, 2014, were retained for the present work
(Table 1).

Plant morphology and grain characteristics at maturity

Wheat development was assessed through the Zadoks scale
(Zadoks et al., 1974) at 14-day intervals from early stem elongation
to full maturity (March-June). At heading, plant height and spike
density, i.e. the number of spikes per square meter (S/m?), were
assessed in the 36-cell grid. At maturity, plant samples were collect-
ed on 0.9 m? in the central position of each cell. At the laboratory,
spikes were threshed, and the two components of plant biomass
(grain and straw) were weighed and oven dried (105°C) for moisture
determination. Grain and straw dry weight, coupled with S/m?
allowed us to calculate the number of grains per spike (G/S), and
determine mean grain weight (MGW), test weight (dg L), dry
biomass yield (DBY) and harvest index as the ratio of grain to total
plant biomass on a dry weight basis. Grain samples were also sub-
mitted to the analysis of total nitrogen (N) using the same procedure
of soil analysis. N content was multiplied by 5.7 to obtain grain pro-
tein content (GPC) (g kg™! on a dry weight basis).

Soil parameters, proximal and remote vegetation indices, crop
traits, and the respective growth stages are summarised in Table 1.

Harvest data

Combine harvesting was carried out at full wheat maturity on
July 7, 2014. A New Holland CR 9080 (CNH Industrial N.V.,
Basildon, UK) harvester was used, which was equipped with
assisted guiding system based on real time kinematic GPS, and
yield mapping system consisting of a Pektron flow meter (Pektron
Group Ltd, Derby, UK) and Ag Leader moisture sensor (Ag Leader
Technology, Ames, 1A, USA). Raw yield data acquired at 0.2 Hz
frequency were filtered using Yield Editor software (Sudduth et
al., 2007), adjusted at 13% moisture, and geo-referenced through
the Farm Works software (Trimble Navigation Ltd., Sunnyvale,
CA, USA) to obtain the final grain yield (GY) data. Operating in
this way, a total of 4160 GY data points was archived in the exper-
imental area.
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Data analysis and map creation

Soil parameters, spectral vegetation indices and plant traits
were subjected to descriptive statistics: mean, median, minimum,
maximum, standard deviation, coefficient of variation (CV), skew-
ness and kurtosis were assessed. Normal distribution of data was
controlled through the Kolmogorov-Smirnov (K-S) test.

Pearson’s correlation (r) was assessed to evaluate the relation-
ship of soil trait, proximal and remote indices, with GY and related
traits. To avoid additional variation due to estimation of values in
non-surveyed locations (Tagarakis et al., 2013), actual GY data
recorded at harvest were used: the spatial resolution of these values
(4160 data points) exceeded those of soil parameters, proximal and
remote indices, thus permitting their correlation with the closest
GY values. Descriptive statistics and Pearson’s correlations were
run with the Statistica 10 software (StatSoft, Tulsa, OK, USA).

Map creation was performed using the open source software
Quantum GIS 2.2.0 (OSGeo, Beaverton, OR, USA) to geographi-
cally locate measured data of soil parameters, proximal and remote
vegetation indices, and GY. Continuous maps of these traits includ-
ing contour iso-lines were created for graphical representation of
data. Survey points were interpolated using the inverse distance
weighting (IDW) interpolation method. IDW assumes that each
point value has a local influence that decreases with distance
(Bonham-Carter, 1994).

Clustering

Sub-division of the experimental field into homogeneous areas
was based on clustering with three different criteria: soil parame-
ters, proximal and remote vegetation indices. In each case, a max-
imum of three clusters was set as the number fostering sufficient
differentiation while avoiding excessive fragmentation of crop
practices (Lawrence et al., 2016). To overcome the complexity and
the multiple inter-relations of the soil data set composed of 14
parameters, a principal component analysis (PCA) was run to
reduce the number of variables to a meaningful few (Dunteman,
1989; Mallarino et al., 1999; Fraisse et al., 2001). Thereafter,
fuzzy c-means clustering that represents an unsupervised continu-
ous classification procedure, was performed on data of the PCs
retained from the analysis (Li ez al., 2013). The Management Zone
Analyst software (MZA 1.01; University of Missouri-Columbia,
USA) (Fridgen et al., 2004) was used, adopting Euclidean dis-
tances of data points from cluster centres.

PCA was also run on proximal and remote vegetation indices.

Table 1. Soil parameters, proximal and remote vegetation indices
and crop assessments at the respective growth stages.

March 12 30 Early stem elongation Soil analysis
March 15 34 15t node PPCI, PPVI
March 25 32 21 node NT, GS

March 31 34 4t node PPCI, PPVI

April 8 37 Flag leaf just visible NT, GS

April 16 45 Booting PPCI, PPVI

April 24 58 Ear almost fully emerged NT, GS

May 7 69 End of flowering Plant height, S/m?
June 24 91 Ripening HI, MGW, G/S, TW, GPC

PPCI, PurePixel chlorophyll index; PPVI, PurePixel vegetation index; NT, N-Tester; GS, GreenSeeker; S/m?,
spike density; HI, harvest index; MGW, mean grain weight; G/S, grains per spike; TW, test weight; GPC,
grain protein content.
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Two indices x three dates (Table 1) were submitted to PCA in prox-
imal indices, and the same was done in remote indices. Fuzzy c-
means clustering was then performed on the PCs retained, as in the
case of soil parameters. To assess the ability of the three criteria to
delineate areas at different crop behaviour, data of plant morphol-
ogy, yield and quality associated with the homogeneous areas
established with the three criteria were submitted to a one-way
ANOVA through the Statistica 10 software (StatSoft, Tulsa, OK,
USA). The least significant difference at P<0.05 was used to sepa-
rate means of significantly different traits.

Additionally, a cell-by-cell comparison was conducted
between the DBY and GY level associated with each cell, obtained
through independent clustering with the above methods, and the
level determined for that cell by clustering with the three criteria.
Of the three levels assigned, low (L), intermediate (I) and high (H),
the percentage of cells belonging to the same level in the two
scales was used to indicate the degree of agreement between clus-
ters based on either criteria, on one side, and DBY and GY, on the
other side (Tagarakis et al., 2013). Mild disagreement was shown
in those cases where only one class separated the rating given by
the two scales, whereas strong disagreement was evidenced when
the rating diverged by two classes.

Table 2. Descriptive statistics of soil parameters.

CPress

Results

Descriptive statistics

Soil parameters

Soil texture ranged from loamy to sandy-loamy (Table 2),
owing to a noticeable variation in the three classes of particle size
distribution (CV between 26 and 32%). The pH was from moder-
ately to strongly alkaline, in association with high CaCO; content.
No risk of sodium or salinity was evidenced, given a low amount
of Na determining a very low ESP (average, 0.11%), and a negli-
gible level of electrical conductivity (EC.) (average, 0.16 dS m™)
(ESP and EC. data not shown). Organic carbon was always low, as no
sample attained 10 ¢ C kg!. C and N varied concurrently, resulting
in a low C/N ratio. This indicates a soil prone to C loss due to pre-
vailing mineralisation processes.

P and K were in the low range of the respective scales of eval-
uation (D.M. 13/09, 1999), and K was the soil parameter affected
by the largest variation (CV, 35%). Lastly, the CEC was relatively
low, which is consistent with a modest clay and organic C content.

Sand (g kg™) 513 510 314 773 134 26.1 0.22 —0.89 ns
Silt (g kg ™) 379 376 195 544 104 213 —0.15 —0.90 ns
Clay (gkg™ 108 114 32 163 35 318 —0.22 —0.69 ns
pH 8.4 8.4 8.3 8.7 0.1 12 0.81 0.71 ns
CaCO; (gkg™ 204 206 170 232 16 79 —0.56 0.02 ns
C(gkg™h 6.5 6.7 34 9.1 1.5 224 —0.40 0.05 ns
N (gkg ™ 1.1 1.1 0.7 1.3 0.1 11.7 -1.12 2.78 ns
CN 6.1 6.3 4.2 8.3 1.0 16.4 0.23 0.23 ns
Available P (mg kg™) 8.1 7 6.4 10.9 12 15.1 085 ~0.02 ns
Exch. K (mg kg™1) 47.0 43.6 224 82.4 16.6 354 0.49 —0.56 ns
Exch. Ca (mg kg ™) 2310 2371 1877 2568 197 8.5 —0.56 —0.87 ns
Exch. Mg (mg kg1 67.3 72.6 29.5 922 17.5 25.9 —0.65 —0.52 ns
Exch. Na (mg kg ™) 3.0 3.0 2.9 3.3 0.1 3.7 0.92 1.64 ns
CEC (cmol.* kg™ 144 154 73 20.3 2.9 20.1 —0.76 1.10 ns
SD, standard deviation; CV, coefficient of variation; K-S, significance at the Kolmogorov-Smirnov test for normal distribution; ns, not significant; CEC, cation exchange capacity.
Table 3. Descriptive statistics of proximal and remote spectral vegetation indices.
Proximal indices
NT 3/25 407 412 319 437 23 5.7 -1.92 5.34 ns
GS 3/25 0.66 0.68 0.47 0.78 0.09 13.8 —0.55 —0.84 ns
NT 4/8 27 21 347 494 43 10.2 0.06 -1.00 ns
GS 48 0.73 0.77 0.47 0.80 0.08 11.2 -1.57 2.12 *
NT 4/24 460 465 288 557 66 14.3 —0.84 0.20 ns
GS 424 0.74 0.76 0.53 0.78 0.05 73 -2.57 720 *
Remote indices
PPCI 3/15 80.0 82.0 52.0 92.0 10.9 13.6 —3.48 21.07 o
PPVI 3/15 59.5 60.0 40.0 73.0 9.0 15.2 —0.25 —0.99 ns
PPCI 3/31 74.6 76.0 55.0 82.0 5.2 7.0 -1.72 3.19 o
PPVI 3/31 79.8 82.0 58.0 89.0 78 9.7 —0.72 —0.26 ns
PPCI 4/16 79.7 81.0 64.0 89.0 5.5 7.0 —0.78 0.22 *
PPVI 4/16 83.3 84.0 68.0 90.0 49 5.9 -1.03 0.62 o

SD, standard deviation; CV, coefficient of variation; K-S, significance at the Kolmogorov-Smirnov test for normal distribution; ns, * and **, not significant and significant at P<0.05 and P<0.01, respectively;

NT, N-Tester; GS, GreenSeeker; PPCI, PurePixel chlorophyll index; PPVI, PurePixel vegetation index.
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Proximal and remote spectral vegetation indices

NT increased from stem elongation (3/25) to ear emergence
(4/24), which is consistent with an increase in chlorophyll content
between the two stages (Table 3). NT variation also increased
between the two stages (CV from 5.7 to 14.3%).

GS increased in parallel to NT, as consequence of the wheat
plant attaining peak growth. GS variation decreased with time, but
data became non-normally distributed (significant K-S test at the
second and third time). Both NT and GS portrayed a generally
modest variation.

PPCI did not substantially increase between early stem elonga-
tion (3/15) and booting (4/16) (Table 3). This is in contrast to NT
that is the proximal index addressing chlorophyll content. PPCI
variation was quite low and decreasing between the two stages.

PPVI noticeably increased during the same period (Table 3), in
accordance with GS that is the equivalent proximal index. PPVI
variation decreased in time, still in accordance with GS variation.

Plant morphology, yield and quality

Plant height varied between ca. 0.5 and 1 m (Table 4). The
mean value was closer to the highest value and the variation was
quite low (CV, 13%), suggesting that only a small field fraction
was affected by poor growth conditions. DBY staged a higher vari-
ation than plant height (CV, 25%). Conversely, HI showed a tight
range and a typical mean value (0.50). This suggests that in poor
field areas wheat growth was constrained since an early stage,
resulting in stunted plants producing a few grain.

GY exhibited a normal mean value for winter wheat grown in
the region of the experiment (6.25 Mg ha!). The sizeable variation
(CV, 27%) reflects contrasting changes in the three yield compo-
nents: G/S and MGW staged the highest and lowest variation,
respectively. Thus, wheat response to variable growth conditions
determined morphological changes influencing spike fertility
(G/S) more than spike density (S/m?), in turn more than MGW.

Lastly, the two traits addressing grain quality, TW and GPC,
exhibited a respective high and modest level, in both cases with
limited variation.

Relationships between soil and spectral vegetation data,
and plant traits

Plant height and HI were significantly correlated with many
soil parameters and vegetation indices (Table 5): negative relation-
ships were shown with sand and pH, whereas positive relationships
were evidenced with silt, clay, C, N, their ratio, and with all prox-
imal and remote vegetation indices.

Sand (g kg')

314

Clgka")

Figure 1. Smoothed contour maps for the soil parameters sand,

pH, and total organic C.

t GS March 25 PPVI March 31 GY (Mg ha")
.. 047 2‘: 163
050 2
& 054 65 3.'2;
3 057 ] 466
ol | ; e
X 6.
235 068 7 7.69
N 071 8 870
074 % 971
078 8 0.

Figure 2. Smoothed contour maps for the spectral vegetation
index GreenSeeker (GS) at March 25, PurePixel vegetation index
(PPVI) at March 31, and final grain yield (GY).

Table 4. Descriptive statistics of plant morphology, yield and quality traits.

Height (m) 0.83 0.86 0.51 0.99 0.1 132 -1.14 1.35 ns
DBY (Mg ha™") 10.90 11.55 440 14.59 2.68 24.6 —0.55 —047 ns
HI (wiw) 0.50 0.50 0.40 0.55 0.03 6.2 -1.03 1.68 ns
GY (Mg ha ™) 6.25 6.66 242 8.57 1.70 213 —0.46 -0.79 ns
S/m? (no. m2) 574 579 458 688 61 10.7 -0.13 —0.93 ns
G/S (no. spike™) 25.3 26.9 9.6 418 8.1 32.2 —0.33 —0.44 ns
MGW (mg) 39.4 39.8 33.6 422 18 45 -1.04 2.05 ns
TW (dg L) 83.7 83.8 79.8 85.8 12 1.5 -1.29 2.54 ns
GPC (gkg ™ 100.9 101.5 75.8 1334 14.1 13.9 035 —0.30 ns

SD, standard deviation; CV, coefficient of variation; K-S, significance at the Kolmogorov-Smirnov test for normal distribution; ns, not significant. DBY, dry biomass yield; HI, harvest index; GY, grain yield (at 13% moisture);
S/m?, spike density; G/S, grains per spike; MGW, mean grain weight; TW, test weight; GPC, grain protein content.
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DBY and GY were also significantly correlated with many soil
parameters and vegetation indices (Table 5). These relationships
substantially reflect those above referred involving plant height
and HI, two traits significantly correlated with yield (data not
shown). It is worth noting that the two indices of chlorophyll con-
tent (NT and PPCI) exhibited improved correlations with DBY and
GY as time proceeded, in contrast to the two indices of general
plant status (GS and PPVI). In general, DBY showed higher corre-
lations with vegetation indices than GY.

Concerning the three yield components, spike density (S/m?)
was poorly correlated with all soil and vegetation data, whereas
spike fertility (G/S) and MGW were correlated with many soil
parameters and all vegetation indices (Table 5).

Lastly, the two traits addressing grain quality (TW and GPC)
were generally weakly related with soil parameters and proximal
indices. The correlations got stronger and were always negative
when passing to remote vegetation indices. GPC was generally
better correlated than TW.

Spatial distribution of soil and crop data

Continuous maps of the three soil parameters and the two veg-
etation indices featuring the highest correlations with GY (Table 5)
are shown in Figures 1 and 2, respectively. Figure 2 includes GY
map.

The sand content displayed the highest values (>700 g kg™!) in
the northeastern part of the experimental field, in contrast to the

CPress

lowest values (<400 g kg™') in the southwestern part. The pH out-
lined a similar pattern, despite a sharper shift from high values in
the northeastern tip to low values in the rest of the field. However,
pH range was rather tight, all values indicating moderate to strong
alkalinity (pH range, 8.3-8.7). Lastly, total organic C exhibited a
pattern opposed to sand content: very low C values (<4 g kg™!) in
the north-eastern area where sand was particularly abundant, in
exchange for quite higher values (>8 g kg™!) in the southern part of
the field where sand was counter-balanced by higher clay and silt
content.

GS at stem elongation (March 25) exhibited NDVI values indi-
cating stunted growth (~0.50) in the northeastern part of the field,
compared to normal growth (>0.60) in the southern part. PPVI at
the same wheat stage (March 31) showed a smoother pattern
between low (north-eastern) and high (southern) part of the field,
despite an intrinsic variation (CV) similar to NDVI (Table 3).
Finally, GY was actually very low (<3 Mg ha™!) in the northeastern
part of the field, whence values gradually increased to top wheat
yield (>8 Mg ha!) in the southwestern part of the field.

Homogeneous areas

Clustering

PCA on soil properties, proximal and remote vegetation
indices accounted for a respective 68, 93 and 97% of the total vari-

Table 5. Pearson’s correlations (r) between soil parameters, proximal and remote vegetation indices, on one side, and plant traits, on

the other side.

Soil parameters

Sand —0.85* —0.92* —0.57* —0.91* —0.15 —0.81* —0.63* 0.04 0.41
Silt 0.84* 0.90* 0.54* 0.89* 0.12 0.80* 0.59* —0.01 —0.40
Clay 0.77* 0.84* 0.59* 0.85* 0.21 0.73* 0.67* —0.09 —0.42%*
pH —0.86* —0.87* —0.56* —0.87* —0.03 —0.85% —0.58* 0.02 0.39
CaCO; 0.48** 0.43%* 0.38 0.45%* —0.03 0.38 0.47%* 0.20 —=0.10
C 0.85* 0.86* 0.54* 0.85* 0.01 0.83* 0.48** —0.28 —(.53**
N 0.64* 0.64* 0.30 0.61* —0.13 0.63* 0.31 —0.05 —0.15
C/N 0.76* 0.78* 0.55* 0.79* 0.10 0.73* 0.48** —0.35 —0.63*
P 0.43** 0.33 0.36 0.33 0.14 0.29 0.30 —0.35 —0.50%*
K —0.31 —0.32 —0.21 —0.33 0.11 —0.33 —0.25 —0.12 -0.11
Ca —0.27 —0.27 —0.34 —0.32 —0.16 —0.32 —0.29 —0.02 —0.03
Mg —0.06 —0.03 —0.15 —0.08 0.02 —0.12 —0.11 —0.12 —0.21
Na —0.16 —0.21 —0.46** —0.30 —0.05 —0.24 —0.25 0.10 0.18
CEC —0.16 —0.05 —0.15 —0.08 0.12 —0.21 —0.18 —0.09 —0.11
Proximal indices
NT 3/25 0.76* 0.80* 0.38** 0.80* 0.03 0.77* 0.52* —0.27 —041%*
GS 3/25 0.87* 0.93* 0.60* 0.96* —0.06 0.89* 0.67* —0.21 —0.51*%
NT 4/8 0.80* 0.88* 0.46* 0.89* —0.18 0.79* 0.58* —0.15 —0.36%*
GS 4/8 0.94* 0.84* 0.67* 0.88* 0.07 0.87* 0.76* .12 —0.53*
NT 4/24 0.88* 0.86* 0.55* 0.88* —0.11 0.85* 0.69* —0.02 —0.29
GS 424 0.91* 0.75* 0.63* 0.78* 0.09 0.77* 0.78* 0.01 —0.41%*
Remote indices

PPCI 3/15 0.71* 0.77* 0.46* 0.75* 0.01 0.69* 0.57* —0.30* —0.54*
PPVI 3/15 0.86* 0.93* 0.61* 0.91* 0.01 0.87* 0.71* —0.39* —0.68*
PPCI 3/31 0.76* 0.83* 0.45* 0.79* 0.07 0.74* 0.61* —0.32% —0.59*
PPVI 3/31 0.87* 0.94* 0.60* 0.92* 0.05 0.88* 0.70* —0.37* —0.69*
PPCI 4/16 0.84* 0.90* 0.58* 0.89* 0.01 0.84* 0.68* —0.42* —0.67*
PPVI 4/16 0.84* 0.91* 0.57* 0.89* 0.04 0.86* 0.67* —0.36* —0.67*

DBY, dry biomass yield; HI, harvest index; GY, grain yield; S/m? spike density; G/S, grains per spike; MGW, mean grain weight; TW, test weight; GPC, grain protein content; NT, N-Tester; GS, GreenSeeker; PPCI, PurePixel
Chlorophyll Index; PPVI, PurePixel Vegetation Index; CEC, cation exchange capacity. r values significant at **P<0.05 and *P<0.01, respectively (n = 24, 36 and 131 for the respective correlations with soil parameters,

proximal and remote indices).
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ance explained by the first two PCs (data not shown). Maps origi-
nating from clustering are shown in Figure 3. The three maps show Discussion
the L and H potential area in the high and low part of the field,
respectively. However, differences in shape and, especially, size
may be evinced among the three areas (Table 6). Clustering based
on soil parameters (CLUg,) and proximal indices (CLU,;) parti-
tioned a similar share of the experimental field to the L and H area
(25 and 29% in CLU,; 25 and 33% in CLU,;). Compared to this,
clustering based on remote indices (CLU,) apportioned the highest
share to the H area (46%), and the lowest share to the L area (16%).

The experimental area chosen for this study, based on previous
yield records, has portrayed a remarkable variation in wheat crop
characteristics. This has resulted in a ca. 2.5-fold increase in DBY
and GY between minimum and maximum (Table 4), and a 100%
GY increase between L and H area with clustering based on prox-
imal and remote vegetation indices (Table 6). These are among the
highest variations observed in wheat studies (Song et al., 2009;
Peralta et al., 2015; Quebrajo et al., 2015; Basso et al., 2016).

Cluster comparison

Morphological, yield and quality traits exhibited a different
profile in the homogeneous areas obtained with the three criteria
(Table 6). CLUy, determined lower differences among trait levels.
Especially in the case of GY that is the main trait, the gap between
H and L level was quite narrower in CLUj, (2.56 Mg ha™!) than in
CLU,i (3.96 Mg ha!) and CLUj (3.87 Mg ha™!), and no statistical
difference was found between I and H in CLUj,. The same pattern
was shown in the case of DBY. Likewise, TW and GPC were more
differentiated in CLU,; and CLUj, although these two quality traits
outlined a decreasing trend between L and H area, in contrast to
DBY and GY.

Hence, it is perceived that CLU, was less prone to indicate
field portions at different crop performance, compared to CLUj;
and CLU,. However, a major difference is seen between these two:
CLU,; determined an almost 100% GY increase between L and H
zone, while partitioning the field surface into three areas of com-
parable size (between 25 and 42%). Conversely, CLU,; showed a
similar GY increase between L and H, but these two field portions
greatly differed in size (16 vs 46%, respectively).

The analysis of agreement between cell levels determined by L
clustering with the three criteria, and DBY and GY, showed a bet- ol
ter match for proximal and, to a lesser extent, remote indices, com- I H

pared to soil parameters (Table 7). It is therefore demonstrated that
spectral vegetation indices supplied a more reliable indication of Figure 3. Maps originating from clustering based on soil param-
yield potential, beside providing a stronger differentiation of DBY ~ eters (CLU,,), proximal (CLU,;) and remote spectral vegetation
and GY (Table 6). DBY staged a stronger agreement with CLU,,  indices (CLU. L, I, H mean low, intermediate and high poten-
and CLU,,; than GY, in exchange for a weaker agreement in CLU;;. tial area, respectively.

Table 6. Plant morphology, yield and quality traits in field areas clustered on the basis of soil parameters (CLU,,), proximal (CLU,;)
and remote spectral vegetation indices (CLUy).

CLU,,
L 2 0.64> 787 047> 428 571 16.1b 37.60 834 1076
I 16 0.822 11612 0512 6.720 574 28,20 40,00 83.8 1009
H 29 0.83 11.982 04920 6.8 586 2728 39,3 83.7 97.7
CLU,
L % 0.69¢ 7.63¢ 047> 409 563 149¢ 3M4p 837 110.00
I 1 0.84> 10.69> 0.500 6110 592 25.5 39.7a 84.1a 1013
H 33 093 13612 0.52 8.05 560 32.80 404a 83.Ib 93.60
CLU;
L 16 0.67¢ 6.88¢ 048 3.83¢ 583 16.6¢ 38.1¢ 84.00 10862
I 38 0.75> 9.84> 049> 5510 572 2.1 38.9> 83.9° 10440
H 46 0.86° 13.06° 051 1100 588 302 40,12 83.3° 94.9¢

L, I, H, mean low, intermediate and high potential yield area, respectively; DBY, dry biomass yield; HI, harvest index; GY, grain yield (at 13% moisture); S/m?, spike density; G/S, grains per spike; MGW, mean grain weight;
TW, test weight; GPC, grain protein content. Within each clustering (i.e., CLUs, CLU, and CLUy), different letters indicate significantly different means according to the least significant difference test (P<0.05).
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The three domains of data acquisition, soil analysis, proximal
and remote canopy sensing, have proved generally able to repre-
sent the variable crop behaviour, which is the premise for homoge-
neous area delineation. Owing to the highly significant correlations
of many soil and spectral vegetation variables with DBY and GY
(Table 5), their aggregation into compound variables through PCA
was seen a necessary step. PCA successfully served this task, as
demonstrated by the high proportion of the original variance
explained by the first two PCs in the 14 soil parameters (68%), 6
proximal (93%) and 6 remote vegetation indices (97%).

PCA represents a common approach for reducing the number
of variables, which is also echoed in studies on wheat spatial vari-
ation (Casa and Castrignano, 2008; Peralta et al., 2015). In our
work, submitting spectral vegetation indices to PCA was aimed at
delineating homogeneous areas based on data covering a more
extended wheat stage, allowing key practices (e.g., nitrogen top
dress fertilisation) to be more easily carried out in a frame of SSM.
The use of PCA for spectral vegetation indices was supported by
the high correlations that the four proximal/remote indices main-
tained with DBY and GY across the surveyed stages (Table 5). The
high correlations between the three dates for each index (average r
between 0.81 and 0.91; data not shown also supported this choise).
Furthermore, it was a straightforward option to join PPCI and
PPVI that are determined simultaneously, despite the intrinsic dif-
ference of a chlorophyll (PPCI) vs growth (PPVI) index. Thus it
appeared sensible to do the same with NT and GS that are the two
equivalent proximal traits.

The complex of these choices led to the delineation of homo-
geneous areas whose robustness was proved by their ability to
indicate field areas consistently matching growth potential (L, I, H
area) with analogous differentiation of morphological and yield
traits (Table 6), and by the good agreement between area level set
with the three criteria, and the level of DBY and GY independently
clustered with the same procedure (Table 7). Attempts to delineate
homogeneous areas based on a single soil parameter or vegetation
index resulted in a similar relationship with DBY and GY (not
shown), provided that the variable chosen had a good correlation
with either trait. However, which variable will be best correlated
with final yield cannot be anticipated during crop growth. Thus, in
our work we combined several variables into a few PCs resulting
in better-buffered homogeneous areas. It results that, from a prac-
tical viewpoint, either soil data could be used as a whole, or crop
sensing could be conducted once during the surveyed stages, to
discriminate areas at different yield potential.

Lastly, adoption of more than three levels for both homoge-
neous areas and GY is seldom echoed in the literature on wheat
(Farid et al., 2016). Our decision to stop at three, beside limiting

Table 7. Degree of agreement (% cells) between the three levels
(L, I and H) of dry biomass yield (DBY) and grain yield (GY), on
one side, and field clusters based on soil parameters (CLU,,),
proximal (CLU,;) and remote spectral vegetation indices (CLU}),
on the other side.

DBY Agreement 54 67 79
Mild disagreement 38 33 21
Strong disagreement 8 - -
GY Agreement 50 89 72
Mild disagreement 46 11 28
Strong disagreement 4 - -
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field patchiness to the benefit of simpler crop practices (Paice et
al., 1998), is supported by the fact that choosing more than three
levels was shown to provide modest advantages in the amount of
explained variance (Fraisse et al., 2001; Tagarakis et al., 2013).

Homogeneous areas obtained through clustering based on
spectral vegetation indices vs. soil parameters determined a wider
ranking of DBY, GY and associated parameters (Table 6), and a
better cell-to-cell agreement with DBY and GY (Table 7).
However, the soil parameters used in this study (Table 2) are rather
consistent in time, whereas spectral vegetation indices are intrinsi-
cally variable between years, depending on growth conditions
affecting canopy reflectance properties (Diacono et al., 2013).
Thus, soil analysis supplies data that can be used for more years,
whereas spectral vegetation indices need to be assessed each year.
In exchange for this, canopy sensing involves less burden and cost
than soil analysis, especially in the case of remote sensing.

A combined use of soil analysis and vegetation indices could
also be envisaged (Song et al., 2009). However, in the cited work
soil parameters and a vegetation index were combined with GY to
delineate homogeneous areas, so the additive effect of vegetation
index to soil analysis cannot be ascertained independently from
GY. In contrast to this, we clustered soil and vegetation data alone,
and used DBY, GY and related traits to rate the appropriateness of
the clusters obtained. It is a sounder approach not to use crop yield
in homogeneous area delineation, as yield is a grower’s ultimate
goal and cannot be predicted months before harvesting. This
choice is supported by other sources in the literature (Peralta et al.,
2015; Farid et al., 2016).

Remote sensing of spectral vegetation indices has been
focused only recently in wheat studies addressing the establish-
ment of variable rate N fertilisation (Basso et al., 2016) and GY
prediction (Zhang and Liu, 2014; Dalla Marta ef al., 2015). Other
works that allegedly refer to remote sensing, actually address prox-
imal sensing. Of the two index categories, general crop status and
chlorophyll content, the cited works are equally in favour of the
former (Dalla Marta et al., 2015) and the latter category (Zhang
and Liu, 2014), and a mix of them (Basso et al., 2016). Data in our
work do not indicate a clear advantage for either category (Table 5),
so their combination by means of PCA appears once more advis-
able. However, in this specific subject the level of knowledge is
still insufficient for univocal consensus to be reached.

Finally, the similar good performance of proximal and remote
vegetation indices demonstrates the quality of remote data
achieved by commercial systems. This is in agreement with a
recent work where proximal sensing was used for validation of
satellite images (Basso et al., 2016).

Conclusions

Advantages and disadvantages of homogeneous area delin-
eation using soil parameters vs. proximal and remote spectral veg-
etation indices appear non-univocal, in light of the above discus-
sion. This work based on one year of wheat cropping in a region
where wheat rotation with other crops is the standard good prac-
tice, represents a showcase of the three systems’ potential.
Nevertheless, the approach used in data processing has resulted in
a robust delineation of homogeneous areas, as proved by the sub-
stantial consistency with final yield and related attributes. Further
studies shall address the inter-annual variation of the proposed
methods, in order to corroborate these findings and develop
research driven strategies of practical use.
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