Innovative amendments derived from industrial and municipal wastes enhance plant growth and soil functions in potentially toxic elements-polluted environments

Submitted: 19 November 2020
Accepted: 20 March 2021
Published: 23 March 2021
Abstract Views: 1331
HTML: 19
PDF: 552
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Potentially toxic elements (PTE), e.g. As, Sb, Cd, Cu, Pb, Zn, can severely impact soil element cycling, organic matter turnover and soil inhabiting microbiota. Very often this has dramatic consequences for plant growth and yield which are greatly restricted in PTE-contaminated soils. The use of innovative amendments to reduce the labile pool of such soil contaminants, can result as a feasible and sustainable strategy to improve the fertility and functionality of PTE-contaminated soils as well as to exploit these latter from an agronomic point of view. Water treatment residuals (WTR), red muds (RM), organic-based materials originating from the waste cycle, e.g. municipal solid waste compost (MSWC) and biochar (BCH), have emerged in the last decades as promising amendments. In this paper, we report a synthesis of the lessons learned from research carried out in the last 20 years on the use of the above-mentioned innovative amendments for the manipulation of soil fertility and functionality in PTE-contaminated soils. The amendments considered possess physico-chemical properties useful to reduce labile PTE in soil (e.g. alkaline pH, porosity, Fe/Al phases, specific functional groups and ionic composition among the others). In addition, they contain organic and inorganic nutrients which can contribute to improve the soil chemical, microbial and biochemical status. This is often reflected by a higher organic matter content in amended soils and/or an increase of the cation exchange capacity, available P and total N and/or dissolved organic C. As a result, soil microbial abundance, in particular heterotrophic fungi and bacteria, and enzyme activities (e.g. dehydrogenase, urease and β-glucosidase) are commonly enhanced in amended soils, while plant growth can be significantly stimulated. Overall, the obtained results suggest that the studied amendments can be used to reduce PTE bioavailability in polluted soils, improve soil microbial status and functionality, and enhance the productivity of different crops. This can offer a precious opportunity for the productive recovery of PTE-polluted soils.

Highlights
- Water treatment residuals, red muds, municipal solid waste compost and biochar can reduce labile PTE in contaminated soils.
- When used as amendments, WTR, RM, MSWC and BCH improve soil chemical fertility of PTE-polluted soils.
- WTR, RM, MSWC and BCH stimulate soil enzyme activity and heterotrophic bacterial abundance in PTE-polluted soils.
- WTR, RM, MSWC and BCH can be used as strategic amendments to enhance plant growth in environments polluted by PTE.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Abou Jaoude L, Castaldi P, Nassif N, Pinna MV, Garau G, 2020. Biochar and compost as gentle remediation options for the recovery of trace elements-contaminated soils. Sci. Total Environ. 711:134511. DOI: https://doi.org/10.1016/j.scitotenv.2019.134511
Abou Jaoude L, Garau, G, Nassif, N, Darwish, T, Castaldi, P, 2019. Metal(loid)s immobilization in soils of Lebanon using municipal solid waste compost: microbial and biochemical impact. Appl. Soil Ecol. 143:134-43. DOI: https://doi.org/10.1016/j.apsoil.2019.06.011
Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS, 2004. Role of assisted natural remediation in environmental cleanup. Geoderma 122:121-42. DOI: https://doi.org/10.1016/j.geoderma.2004.01.003
Ahmad T, Ahmad K, Alam M, 2016. Sustainable management of water treatment sludge through 3’R’ concept. J. Clean. Prod. 124:1-13. DOI: https://doi.org/10.1016/j.jclepro.2016.02.073
Allende KL, McCarthy DT, Fletcher TD, 2014. The influence of media type on removal of arsenic, iron and boron from acidic wastewater in horizontal flow wetland microcosms planted with Phragmites australis. Chem. Eng. J. 246:217-28. DOI: https://doi.org/10.1016/j.cej.2014.02.035
Alvarenga P, Gonçalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC, 2008. Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Sci. Total Environ. 406:43-56. DOI: https://doi.org/10.1016/j.scitotenv.2008.07.061
Antelo J, Avena M, Fiol S, Lopez R, Arce F, 2005. Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface. J. Colloid Interface Sci. 285:476-86. DOI: https://doi.org/10.1016/j.jcis.2004.12.032
Apak R, Tutem E, Hugul M, Hizal J, 1998. Heavy metal cation retention by unconventional sorbents (red mud and fly ashes). Water Res. 32:430-40. DOI: https://doi.org/10.1016/S0043-1354(97)00204-2
Bacchetta G, Cappai G, Carucci A, Tamburini E, 2015. Use of native plants for the remediation of abandoned mine sites in Mediterranean semiarid environments. Bull. Environ. Contam. Toxicol. 94:326-33. DOI: https://doi.org/10.1007/s00128-015-1467-y
Bandara T, Herath I, Kumarathilaka P, Hseu Z, Ok YS, Vithanage M, 2016. Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil. Environ. Geochem. Health 39:391-401. DOI: https://doi.org/10.1007/s10653-016-9842-0
Basta N, Gradwohl R, 2000. Estimation of Cd, Pb, and Zn bioavailability in smelter contaminated soils by a sequential extraction procedure. J. Soil Contam. 9:149-64. DOI: https://doi.org/10.1080/10588330008984181
Basta NT, McGowen SL, 2004. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ. Pollut. 127:73-82. DOI: https://doi.org/10.1016/S0269-7491(03)00250-1
Bastida F, Jindo K, Moreno JL, Hernández T, García C, 2012. Effects of organic amendments on soil carbon fractions, enzyme activity and humus-enzyme complexes under semi-arid conditions. Eur. J. Soil Biol. 53:94-102. DOI: https://doi.org/10.1016/j.ejsobi.2012.09.003
Beesley L, Dickinson N, 2010. Carbon and trace element mobility in an urban soil amended with green waste compost. J. Soils Sediments 10:215-22. DOI: https://doi.org/10.1007/s11368-009-0112-y
Beesley L, Inneh OS, Norton GJ, Jimenez EM, Pardo T, Clemente R, Dawson JC, 2014. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ. Pollut. 186:195-202. DOI: https://doi.org/10.1016/j.envpol.2013.11.026
Beesley L, Marmiroli M, 2011. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut. 159:474-80. DOI: https://doi.org/10.1016/j.envpol.2010.10.016
Bhattacharyya P, Tripathy S, Kim K, Kim SH, 2008. Arsenic fractions and enzyme activities in arsenic-contaminated soils by groundwater irrigation in West Bengal. Ecotoxicol. Environ. Saf. 71:149-56. DOI: https://doi.org/10.1016/j.ecoenv.2007.08.015
Blagodatskaya E, Kuzyakov Y, 2008. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure:critical review. Biol. Fertil. Soils 45:115-31. DOI: https://doi.org/10.1007/s00374-008-0334-y
Branzini A, Zubillaga MS, 2012. Comparative use of soil organic and inorganic amendments in heavy metals stabilization. Appl. Environ. Soil Sci. 721032. DOI: https://doi.org/10.1155/2012/721032
Buss W, Graham MC, Shepherd JG, Mašek O, 2016. Risks and benefits of marginal biomass-derived biochars for plant growth. Science Total Environ. 569-570:496-506. DOI: https://doi.org/10.1016/j.scitotenv.2016.06.129
Cao X, Ma L, Shiralipour A, 2003. Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environ. Pollut. 126:157-67. DOI: https://doi.org/10.1016/S0269-7491(03)00208-2
Castaldi P, Demurtas D, Silvetti M, Deiana S, Garau G, 2017. Interaction of the water soluble fraction of MSW-composts with Pb(II) and Cu(II) ions. J. Environ. Manage. 192:39-47. DOI: https://doi.org/10.1016/j.jenvman.2017.01.032
Castaldi P, Garau G, Deiana P, Melis P, 2009a. Evolution of carbon compounds during municipal solid waste composting: suitability of chemical and biochemical parameters in defining the stability and maturity of the end product. pp. 17-31 in J. Martín-Gil (Ed.), Compost II. Dynamic soil, dynamic plant 3 (Special Issue 1), Global Science Book.
Castaldi P, Mele E, Silvetti M, Garau G, Deiana S, 2014. Water treatment residues as accumulators of oxoanions in soil. Sorption of arsenate and phosphate anions from an aqueous solution. J. Hazard. Mater. 264:144-52. DOI: https://doi.org/10.1016/j.jhazmat.2013.10.037
Castaldi P, Melis P, Silvetti M, Deiana P, Garau G, 2009b. Influence of pea and wheat growth on Pb, Cd, and Zn mobility and soil biological status in a polluted amended soil. Geoderma 151:241-8. DOI: https://doi.org/10.1016/j.geoderma.2009.04.009
Castaldi P, Santona L, Melis P, 2005. Heavy metals immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere 60:365-71. DOI: https://doi.org/10.1016/j.chemosphere.2004.11.098
Castaldi P, Silvetti M, Garau G, Demurtas D, Deiana S, 2015. Copper(II) and lead(II) removal from aqueous solution by water treatment residues. J. Hazard. Mater. 283:240-7. DOI: https://doi.org/10.1016/j.jhazmat.2014.09.019
Castaldi P, Silvetti M, Manzano R, Brundu G, Roggero PP, Garau G, 2018. Mutual effect of Phragmites australis, Arundo donax and immobilization agents on arsenic and trace metals phytostabilization in polluted soils. Geoderma 314:63-72. DOI: https://doi.org/10.1016/j.geoderma.2017.10.040
Castaldi P, Silvetti M, Enzo S, Deiana S, 2011. X-ray diffraction and thermal analysis of bauxite ore-processing waste (red mud) exchanged with arsenate and phosphate. Clays Clay Miner. 59:189-99. DOI: https://doi.org/10.1346/CCMN.2011.0590207
Clarke CE, Stone W, Hardie AG, Quinton JN, Blake LI, Johnson KL, 2019. Better together: water treatment residual and poorâ€quality compost improves sandy soil fertility. J. Environ. Qual. 48:1781-8. DOI: https://doi.org/10.2134/jeq2019.03.0147
Conesa HM, Maria-Cervantes A, Alvarez-Rogel J, Gonzalez-Alcaraz MN, 2014. Role of rhizosphere and soil properties for the phytomanagement of a salt marsh polluted by mining wastes. Int. J. Environ. Sci. Technol. 11:1353-64. DOI: https://doi.org/10.1007/s13762-013-0323-z
Diacono M, Montemurro F, 2010. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 30:401-22. DOI: https://doi.org/10.1051/agro/2009040
Diquattro S, Garau G, Lauro GP, Silvetti M, Deiana S, Castaldi P, 2018. Municipal solid waste compost as a novel sorbent for antimony(V): adsorption and release trials at acidic pH. Environ. Sci. Pollut. Res. 25:5603-15. DOI: https://doi.org/10.1007/s11356-017-0933-y
Ellis RJ, Morgan P, Weightman AJ, Fry JC, 2003. Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl. Environ. Microbiol. 69:3223-30. DOI: https://doi.org/10.1128/AEM.69.6.3223-3230.2003
Evans K, 2016. The History, challenges, and new developments in the management and use of bauxite residue. J. Sustain. Met. 2:316-31. DOI: https://doi.org/10.1007/s40831-016-0060-x
Eykelbosh AJ, Johnson MS, Couto EG, 2015. Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil. J. Environ. Manage. 149:9-16. DOI: https://doi.org/10.1016/j.jenvman.2014.09.033
Fang S, Tsang DCW, Zhou F, Zhang W, Qiu R, 2016. Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar. Chemosphere 149:263-71. DOI: https://doi.org/10.1016/j.chemosphere.2016.01.060
Fellet G, Marmiroli M, Marchiol L, 2014. Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Sci. Total Environ. 468-469:598-608. DOI: https://doi.org/10.1016/j.scitotenv.2013.08.072
Fendorf S, Nico PS, Kocar BD, Masue Y, Tufano KJ, 2010. Arsenic chemistry in soils and sediments. In: B. Singh, M. Grafe (Eds.), Developments in soil science. Elsevier, Amsterdam, The Netherlands, pp. 357-378. DOI: https://doi.org/10.1016/S0166-2481(10)34012-8
Fiorentino N, Mori M, Cenvinzo V, Duri LG, Gioia L, Visconti D, Fagnano M, 2018. Assisted phytoremediation for restoring soil fertility in contaminated and degraded land. Ital. J. Agron. 13(1S):34-44.
Fitz WJ, Wenzel WW, 2002. Arsenic transformations in the soil-rhizosphere-plant system:fundamentals and potential application to phytoremediation. J. Biotechnol. 99:259-278. DOI: https://doi.org/10.1016/S0168-1656(02)00218-3
Fumagalli P, Comolli R, Ferrè C, Ghiani A, Gentili R, Citterio S, 2014. The rotation of white lupin (Lupinus albus, L.) with metal-accumulating plant crops :A strategy to increase the benefits of soil phytoremediation. J. Environ. Manage. 145:35-42. DOI: https://doi.org/10.1016/j.jenvman.2014.06.001
Garau G, Reeve WG, Brau L, Deiana P, Yates RJ, James D, Tiwari R, O’Hara G, Howieson JG, 2005. The symbiotic requirements of different Medicago spp. suggest the evolution of Sinorhizobium meliloti and S. medicae with hosts differentially adapted to soil pH. Plant Soil 176:263-77. DOI: https://doi.org/10.1007/s11104-005-0374-0
Garau G, Castaldi P, Santona L, Deiana P, Melis P, 2007. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma 142:45-57. DOI: https://doi.org/10.1016/j.geoderma.2007.07.011
Garau G, Porceddu A, Sanna M, Silvetti M, Castaldi P, 2019a. Municipal solid wastes as a resource for environmental recovery:Impact of water treatment residuals and compost on the microbial and biochemical features of As and trace metal-polluted soils. Ecotox. Environ. Safe. 174:445-54. DOI: https://doi.org/10.1016/j.ecoenv.2019.03.007
Garau G, Silvetti M, Castaldi P, Mele E, Deiana P, Deiana S, 2014. Stabilising metal(loid)s in soil with iron and aluminium-based products:microbial, biochemical and plant growth impact. J. Environ. Manage. 139:146-53. DOI: https://doi.org/10.1016/j.jenvman.2014.02.024
Garau G, Silvetti M, Deiana S, Deiana P, Castaldi P, 2011. Long-term influence of red mud on As mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil. J. Hazard. Mater. 185:1241-8. DOI: https://doi.org/10.1016/j.jhazmat.2010.10.037
Garau G, Silvetti M, Vasileiadis S, Donner E, Diquattro S, Deiana S, Lombi E, Castaldi P, 2017. Use of municipal solid wastes for chemical and microbiological recovery of soils contaminated with metal(loid)s. Soil Biol. Biochem. 111:25-35. DOI: https://doi.org/10.1016/j.soilbio.2017.03.014
Garau M, Castaldi P, Patteri G, Roggero PP, Garau G, 2020. Evaluation of Cynara cardunculus L. and municipal solid waste compost for aided phytoremediation of multi potentially toxic element-contaminated soils. Environ. Sci. Pollut. Res. [In press]. DOI: https://doi.org/10.1007/s11356-020-10687-2
Garau M, Garau G, Diquattro S, Roggero PP, Castaldi P, 2019b. Mobility, bioaccessibility and toxicity of potentially toxic elements in a contaminated soil treated with municipal solid waste compost. Ecotox. Environ. Safe. 186:109766. DOI: https://doi.org/10.1016/j.ecoenv.2019.109766
Glaser B, Lehr VI, 2019. Biochar efects on phosphorus availability in agricultural soils: a meta-analysis. Sci. Rep. 9:9338. DOI: https://doi.org/10.1038/s41598-019-45693-z
Gómez JD, Denef K, Stewart CE, Zheng J, Cotrufo MF, 2014. Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur. J. Soil Sci. 65:28-39. DOI: https://doi.org/10.1111/ejss.12097
Gorovtsov A, Rajput V, Minkina T, Mandzhieva, S, Sushkova, S, Kornienko, I, Tatiana VG, Chokheli V, Aleshukina I, Zinchenko V, Fedorenko E, Movsesyan H, 2019. The role of biochar-microbe interaction in alleviating heavy metal toxicity in Hordeum vulgare L. grown in highly polluted soils. Appl. Geochem. 104:93-101. DOI: https://doi.org/10.1016/j.apgeochem.2019.03.017
Gupta VK, Sharma S, 2002. Removal of cadmium and zinc from aqueous solutions using red mud. Environ. Sci. Technol. 36:3612-7. DOI: https://doi.org/10.1021/es020010v
Houben D, Sonnet P, 2015. Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus. Chemosphere 139:644-51. DOI: https://doi.org/10.1016/j.chemosphere.2014.12.036
Hsu W-M, Hseu Z-Y, 2011. Rehabilitation of a sandy soil with aluminium-water treatment residual. Soil Sci. 176:691-8. DOI: https://doi.org/10.1097/SS.0b013e318235dd99
Huang M, Zhu Y, Li Z, Huang B, Luo N, Liu C, Zeng G, 2016. Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: mechanisms, efficacy, problems, and strategies. Water Air Soil Pollut. 227:359. DOI: https://doi.org/10.1007/s11270-016-3068-8
Ibrahim M, Li G, Khan S, Chi Q, Xu Y, Zhu Y, 2017. Biochars mitigate greenhouse gas emissions and bioaccumulation of potentially toxic elements and arsenic speciation in Phaseolus vulgaris L. Environ Sci. Pollut. Res. 25:15264. DOI: https://doi.org/10.1007/s11356-017-0478-0
Ippolito JA, Barbarick KA, Elliott HA, 2011. Drinking water treatment residuals: a review of recent uses. J. Environ. Qual. 40:1-12. DOI: https://doi.org/10.2134/jeq2010.0242
Jiang L, Han G, Lan Y, Liu S, Gao J, Yang X, Meng J, Chen W, 2017. Corn cob biochar increases soil culturable bacterial abundance without enhancing their capacities in utilizing carbon sources in Biolog Eco-plates. J. Integr. Agric. 16:713-24. DOI: https://doi.org/10.1016/S2095-3119(16)61338-2
Jien S-H, Wang C-S, 2013. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 110:225-33. DOI: https://doi.org/10.1016/j.catena.2013.06.021
Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T, 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11:6613-21. DOI: https://doi.org/10.5194/bg-11-6613-2014
Kosmulski M, 2016. Isoelectric points and points of zero charge of metal (hydr)oxides:50 years after Parks’ review. Adv. Colloid Interface Sci. 238:1-61. DOI: https://doi.org/10.1016/j.cis.2016.10.005
Kouki S, Saidi N, M’hiri F, Hafiane A, 2015. A comparative study of nutrients, cadmium, and chromium bioremoval efficiencies of three emergent macrophytes from a metal-contaminated wastewater. Clean Soil Air Water 43:1531-7. DOI: https://doi.org/10.1002/clen.201500054
Kumpiene J, Bert V, Dimitriou I, Eriksson J, Friesl-Hanl W, Galazka R, Herzig R, Janssen J, Kidd P, Mench M, Müller I, Neu S, Oustriere N, Puschenreiter M, Renella G, Roumier PH, Siebielec G, Vangronsveld J, Manier N, 2014. Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO). Sci. Total Environ. 496:510-22. DOI: https://doi.org/10.1016/j.scitotenv.2014.06.130
Lebrun M, Miard F, Nandillon R, Scippa GS, Bourgerie S, Morabito D, 2019. Biochar effect associated with compost and iron to promote Pb and As soil stabilization and Salix viminalis L. growth. Chemosphere 222:810-22. DOI: https://doi.org/10.1016/j.chemosphere.2019.01.188
Lee SH, Kim EY, Park H, Yun J, Kim JG, 2011. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma 161:1-7. DOI: https://doi.org/10.1016/j.geoderma.2010.11.008
Li JS, Beiyuan J, Tsang DCW, Wang L, Poon CS, Li,XD, Fendorf S, 2017. Arsenic containing soil from geogenic source in Hong Kong:Leaching characteristics and stabilization/solidification. Chemosphere 182:31-9. DOI: https://doi.org/10.1016/j.chemosphere.2017.05.019
Lin Y, Munroe P, Joseph S, Henderson R, Ziolkowski A, 2012. Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 87:151-7. DOI: https://doi.org/10.1016/j.chemosphere.2011.12.007
Lombi E, Hamon RE, Wieshammer G, McLaughlin MJ, McGrath SP, 2004. Assessment of the use of industrial by-products to remediate a copper- and arsenic-contaminated soil. J. Environ. Qual. 33:902-10. DOI: https://doi.org/10.2134/jeq2004.0902
Luengo C, Brigante M, Antelo J, Avena M, 2006. Kinetic of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measuraments. J. Colloid Interface Sci. 300:511-8. DOI: https://doi.org/10.1016/j.jcis.2006.04.015
Lyu F, Hu Y, Wang L, Sun W, 2021. Dealkalization processes of bauxite residue: a comprehensive review. J. Hazard. Mater. 403:123671. DOI: https://doi.org/10.1016/j.jhazmat.2020.123671
Manzano R, Diquattro S, Roggero PP, Pinna MV, Garau G, Castaldi P, 2020. Addition of softwood biochar to contaminated soils decreases the mobility, leachability and bioaccesibility of potentially toxic elements. Sci. Total Environ. 739:139946. DOI: https://doi.org/10.1016/j.scitotenv.2020.139946
Manzano R, Silvetti M, Garau G, Deiana S, Castaldi P, 2016. Influence of iron-rich water treatment residues and compost on the mobility of metal(loid)s in mine soils. Geoderma 283:1-9. DOI: https://doi.org/10.1016/j.geoderma.2016.07.024
Martínez CE, Jacobson AR, McBride MB, 2003. Aging and temperature effects on DOC and elemental release from a metal contaminated soil. Environ. Pollut. 122:135-43. DOI: https://doi.org/10.1016/S0269-7491(02)00276-2
Mehmood S, Rizwan M, Bashir S, Ditta A, Aziz O, Yong LZ, Dai Z, Akmal M, Ahmed W, Adeel M, Imtiaz M, Tu S, 2018. Comparative effects of biochar, slag and ferrous-Mn ore on lead and cadmium immobilization in soil. Bull. Environ. Contam. Toxicol. 100:286-92. DOI: https://doi.org/10.1007/s00128-017-2222-3
Mench M, Vangronsveld J, Lepp N, Bleeker P, Ruttens A, Geebelen W, 2006. Phytoremediation of metal-contaminated soils. In: J.L. Morel, et al. (Eds.), Phytoremediation of metal-contaminated soils. Springer, The Netherlands, pp. 109-190. DOI: https://doi.org/10.1007/1-4020-4688-X_5
Miller M, Palojarvi A, Rangger A, Reeslev M, Kjoller A, 1998. The use of fluorogenic substrates to measure fungal presence and activity in soil. Appl. Environ. Microb. 64:613-7. DOI: https://doi.org/10.1128/AEM.64.2.613-617.1998
Mohapatra PK, 2008. Textbook of environmental microbiology. IK International Publishing House Pvt. Ltd, New Delhi, India.
Mombelli D, Barella S, Gruttadauria A, Mapelli C, 2019. Iron recovery from bauxite tailings red mud by thermal reduction with blast furnace sludge. Appl. Sci. 22:4902. DOI: https://doi.org/10.3390/app9224902
Moreno-Barriga F, Faz Ã, Acosta JA, Soriano-Disla M, Martínez-Martínez S, Zornoza R, 2017. Use of Piptatherum miliaceum for the phytomanagement of biochar amended Technosols derived from pyritic tailings to enhance soil aggregation and reduce metal(loid) mobility. Geoderma 307:159-71. DOI: https://doi.org/10.1016/j.geoderma.2017.07.040
Mulligan CN, Yong RN, Gibbs BF, 2001. Remediation technologies for metal contaminated soils and groundwater: an evaluation. Eng. Geol. 60:193-207. DOI: https://doi.org/10.1016/S0013-7952(00)00101-0
Nagar R, Sarkar D, Punamiya P, Datta R, 2015. Drinking water treatment residual amendment lowers inorganic arsenic bioaccessibility in contaminated soils: a long term study. Water Air. Soil. Pollut. 226:366. DOI: https://doi.org/10.1007/s11270-015-2631-z
Nejad ZD, Rezania S, Jung MC, Al-Ghamdi AA, Mustafa AE-ZMA, Elshikh MS, 2021. Effects of fine fractions of soil organic, semi-organic, and inorganic amendments on the mitigation of heavy metal(loid)s leaching and bioavailability in a post-mining area. Chemosphere 271:129538. DOI: https://doi.org/10.1016/j.chemosphere.2021.129538
Nirel PMV, Morel FMM, 1990. Pitfalls of sequential extractions. Water Res. 24:1055-6. DOI: https://doi.org/10.1016/0043-1354(90)90129-T
Novak JM, Ippolito JA, Ducey TF, Watts DW, Spokas KA, Trippe KM, Sigua GC, Johnson MG, 2018. Remediation of an acidic mine spoil: miscanthus biochar and lime amendment affects metal availability, plant growth, and soil enzyme activity. Chemosphere 205:709-18. DOI: https://doi.org/10.1016/j.chemosphere.2018.04.107
Oliveira A, Pampulha ME, 2006. Effects of long-term heavy metal contamination on soil microbial characteristics. J. Biosci. Bioeng. 102:157-61. DOI: https://doi.org/10.1263/jbb.102.157
Palansooriya KN, Shaheen SM, Chen SS, Tsang DCW, Hashimoto Y, Hou D, Bolan NS, Rinklebe J, Ok YS, 2020. Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. Environ. Int. 134:105046. DOI: https://doi.org/10.1016/j.envint.2019.105046
Paradelo R, Barral MT, 2012. Evaluation of the potential capacity as biosorbents of two MSW composts with different Cu, Pb and Zn concentrations. Bioresour. Technol. 104:810-3. DOI: https://doi.org/10.1016/j.biortech.2011.11.012
Pardo T, Martínez-Fernandez D, de la Fuente C, Clemente R, Komarek M, Bernal MP, 2016. Maghemite nanoparticles and ferrous sulfate for the stimulation of iron plaque formation and arsenic immobilization in Phragmites australis. Environ. Pollut. 219:296-304. DOI: https://doi.org/10.1016/j.envpol.2016.10.014
Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung JW, 2011. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 185:549-74. DOI: https://doi.org/10.1016/j.jhazmat.2010.09.082
Pascual JA, Moreno JL, Hernández T, García C, 2002. Persistence of immobilised and total urease and phosphatase activities in a soil amended with organic wastes. Bioresour. Technol. 82:73-8. DOI: https://doi.org/10.1016/S0960-8524(01)00127-4
Pérez-Sirvent C, Hernández-Pérez C, Martínez-Sánchez MJ, García-Lorenzo ML, Bech J, 2017. Metal uptake by wetland plants:implications for phytoremediation and restoration. J. Soils Sediments 17:1384-93. DOI: https://doi.org/10.1007/s11368-016-1520-4
Phillips IR, 1998. Use of soil amendments to reduce nitrogen, phosphorus and heavy metal availability. J. Soil Contam. 7:191-212. DOI: https://doi.org/10.1080/10588339891334221
Qiao J, Liu T, Wang X, Li F, Lv Y, Cui J, Zeng X, Yuan Y, Liu C, 2018. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere 195:260-71. DOI: https://doi.org/10.1016/j.chemosphere.2017.12.081
Quintela-Sabarís C, Marchand L, Kidd PS, Friesl-Hanl W, Puschenreiter M, Kumpiene J, Müller I, Neu S, Janssen J, Vangronsveld J, Dimitriou I, Siebielec G, Gałązka R, Bert V, Herzig R, Cundy, A.B, Oustrière N, Kolbas A, Mench M, 2017. Assessing phytotoxicity of trace element-contaminated soils phytomanaged with gentle remediation options at ten European field trials. Sci. Total Environ. 599-600:1388-98. DOI: https://doi.org/10.1016/j.scitotenv.2017.04.187
Rao CRM, Sahuquillo A, Sanchez JL, 2008. A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water Air Soil Pollut. 189: 291-333. DOI: https://doi.org/10.1007/s11270-007-9564-0
Regulation (EU) 2019/1009 of 5 June 2019. Regulation of the European parliament and of the council laying down rules on the making available on the market of EU fertilising products and amending, Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. Official Journal of the European Union, L 170, 25 June 2019.
Rocco C, Agrelli D, Tafuro M, Caporale AG, Adamo P, 2018. Assessing the bioavailability of potentially toxic elements in soil: A proposed approach. Ital. J. Agron. 13(1S):16-22.
Sanderson P, Naidu R, Bolan N, 2015. Effectiveness of chemical amendments for stabilisation of lead and antimony in risk-based land management of soils of shooting ranges. Environ. Sci. Pollut. Res. 22:8942-56. DOI: https://doi.org/10.1007/s11356-013-1918-0
Santona L, Castaldi P, Melis P, 2006. Evaluation of the interaction mechanisms between red muds and heavy metals. J. Hazard. Mater. 136:324-9. DOI: https://doi.org/10.1016/j.jhazmat.2005.12.022
Siedt M, Schäffer A, Smith KEC, Nabel M, Roß-Nickoll M, van Dongen JT, 2021. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Total Environ. 751:141607. DOI: https://doi.org/10.1016/j.scitotenv.2020.141607
Sigurdarson JJ, Svane S, Karring H, 2018. The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Rev. Environ. Sci. Bio-Technol. 17:241-58. DOI: https://doi.org/10.1007/s11157-018-9466-1
Silvetti M, Castaldi P, Holm PE, Deiana S, Lombi E, 2014. Leachability, bioaccessibility and plant availability of trace elements in contaminated soils treated with industrial by-products and subjected to oxidative/reductive conditions. Geoderma 214-215:204-12. DOI: https://doi.org/10.1016/j.geoderma.2013.09.010
Silvetti M, Demurtas D, Garau G, Deiana S, Castaldi P, 2017. Sorption of Pb, Cu, Cd, and Zn by municipal solid waste composts:metal retention and desorption mechanisms. Clean-Soil Air Water 45:1600253. DOI: https://doi.org/10.1002/clen.201600253
Speir TW, Kettles HA, Parshotam A, Searle PL, Vlaar LNC, 1999. Simple kinetic approach to determine the toxicity of As[V] to soil biological properties, Soil Biol. Biochem. 31:705-13. DOI: https://doi.org/10.1016/S0038-0717(98)00169-2
Strickland MS, Rousk J, 2010. Considering fungal:bacterial dominance in soils - methods, controls, and ecosystem implications. Soil. Biol. Biochem. 42:1385-95. DOI: https://doi.org/10.1016/j.soilbio.2010.05.007
Summer RN, Smirk DD, Karafilis D, 1996. Phosphorus retention and leachates from sandy soil amended with bauxite residue (red mud). Austr. J. Soil Res. 34:555-67. DOI: https://doi.org/10.1071/SR9960555
Sundman A, Karlsson T, Persson P, 2015. Reactivity of Fe from a natural stream water towards As(V). Appl. Geochem 61:185-91. DOI: https://doi.org/10.1016/j.apgeochem.2015.05.023
Tan D, Long J, Li B, Ding D, Du H, Lei M, 2018. Fraction and mobility of antimony and arsenic in three polluted soils: a comparison of single extraction and sequential extraction. Chemosphere 213:533-40. DOI: https://doi.org/10.1016/j.chemosphere.2018.09.089
Tandy S, Healey JR, Nason MA, Williamson JC, Jones DL, 2009. Remediation ofmetal polluted mine soil with compost:co-composting versus incorporation. Environ. Pollut 157:690-7. DOI: https://doi.org/10.1016/j.envpol.2008.08.006
Tandy S, Meier N, Schulin R, 2017. Use of soil amendments to immobilize antimony and lead in moderately contaminated shooting range soils. J. Hazard. Mater. 324:617-25. DOI: https://doi.org/10.1016/j.jhazmat.2016.11.034
Taneez M, Hurel C, 2019. A review on the potential uses of red mud as amendment for pollution control in environmental media. Environ. Sci. Pollut. Res. 26:22106-25. DOI: https://doi.org/10.1007/s11356-019-05576-2
Tessier A, Campbell PGC, Bisson M, 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51:844-51. DOI: https://doi.org/10.1021/ac50043a017
Timms-Wilson TM, Griffiths RI, Whiteley AS, Prosser JI, Bailey MJ, 2006. Detection of active bacterial populations in soil. In: J.D. van Elsas, J.K. Jansson, J.T. Trevors (Eds.), Modern soil microbiology - second edition. CRC Press, Boca Raton, FL, USA, pp. 387-407.
Udovic M, McBride MB, 2012. Influence of compost addition on lead and arsenic bioavailability in reclaimed orchard soil assessed using Porcellio scaber bioaccumulation test. J. Hazard. Mater. 205-206:144-9. DOI: https://doi.org/10.1016/j.jhazmat.2011.12.049
van Elsas JD, Torsvik V, Hartmann A, Øvreås L, Jansson JK, 2006. The bacteria and archaea in soil. In: J.D. van Elsas, J.K. Jansson, J.T. Trevors (Eds.), Modern soil microbiology - second edition. CRC Press, Boca Raton, FL, USA, pp. 83-105. DOI: https://doi.org/10.1201/9781420015201
Van Vleek B, Amarasiriwardena D, Xing B, 2011. Investigation of distribution of soil antimony using sequential extraction and antimony complexed to soil-derived humic acids molar mass fractions extracted from various depths in a shooting range soil. Microchem. J. 97:68-73. DOI: https://doi.org/10.1016/j.microc.2010.05.015
Ventorino V, Faraco V, Romano I, Pepe O, 2018. Responses of bacterial community structure and diversity to soil eco-friendly bioremediation treatments of two multi-contaminated fields. Ital. J. Agron. 13(1S):53-8.
Visconti D, Fiorentino N, Stinca A, Di Mola I, Fagnano M, 2018. Use of the native vascular flora for risk assessment and management of an industrial contaminated soil. Ital. J. Agron. 13(1S):23-33.
Wang S, Mulligan CN, 2009. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid. Chemosphere 74:274-9. DOI: https://doi.org/10.1016/j.chemosphere.2008.09.040
Wenzel WW, Kirchbaumera N, Prohaskab T, Stingeder G, Lombi E, Adriano DC, 2001. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 436:309-23. DOI: https://doi.org/10.1016/S0003-2670(01)00924-2
Wong MH, 2003. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775-80. DOI: https://doi.org/10.1016/S0045-6535(02)00232-1
Xu X, Cao X, Zhao L, Wang H, Yu H, Gao B, 2013. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ. Sci. Pollut. Res. 20:358-68. DOI: https://doi.org/10.1007/s11356-012-0873-5
Xu X, Zhao Y, Sima J, Zhao L, Masek O, Cao X, 2017. Indispensable role of biocharinherent mineral constituents in its environmental applications:a review. Bioresour. Technol. 241:887-99. DOI: https://doi.org/10.1016/j.biortech.2017.06.023
Yang SX, Liao B, Yang ZH, Chai LY, Li JT, 2016. Revegetation of extremely acid mine soils based on aided phytostabilization:a case study from southern China. Sci. Total Environ. 562:427-34. DOI: https://doi.org/10.1016/j.scitotenv.2016.03.208
Yousaf B, Liu G, Abbas Q, Ullah H, Wang R, Zia-ur-Rehman M, Amina, Niu Z, 2018. Comparative effects of biochar-nanosheets and conventional organic-amendments on health risks abatement of potentially toxic elements via consumption of wheat grown on industrially contaminated-soil. Chemosphere 192:161-70. DOI: https://doi.org/10.1016/j.chemosphere.2017.10.137
Zhang H, Shao J, Zhang S, Zhang X, Chen H, 2020. Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As (V) in paddy soil. J. Hazard. Mater. 390:121349. DOI: https://doi.org/10.1016/j.jhazmat.2019.121349
Zhang WH, Mao SY, Chen H, Huang L, Qiu RL, 2013. Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresour. Tecnol. 147:545-52. DOI: https://doi.org/10.1016/j.biortech.2013.08.082
Zhang X, Zhang X, Huang K, 2016. Phytostabilization of acidic soils with heavy metal contamination using three forage grasses in combination with organic and inorganic amendments. Soil Sediment Contam. 25:459-75. DOI: https://doi.org/10.1080/15320383.2016.1168357
Zhao B, O’Connor D, Shen Z, Tsang DCW, Rinklebe J, Hou D, 2020. Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: an accelerated simulation of long-term aging effects. Environ. Pollut. 264:114687. DOI: https://doi.org/10.1016/j.envpol.2020.114687
Zhao Y, Liu R, Awe OW, Yang Y, Shen C, 2018. Acceptability of land application of alum-based water treatment residuals - An explicit and comprehensive review. Chem. Eng. J. 353:717-26. DOI: https://doi.org/10.1016/j.cej.2018.07.143
Zhao Y, Pei Y, Xiang R, Cheng Y, 2016. Effects of drinking water treatment residuals on the quality of different soils from southern and northern agricultural regions. Res. Environ. Sci. 29:1497-505.
Zornoza, P, Và zquez, S, Esteban, E, Fernà ndez-Pascual, M, Carpena, R, 2002. Cadmium-stress in nodulated white lupin:strategies to avoid toxicity. Plant Physiol. Biochem. 40:1003-9. DOI: https://doi.org/10.1016/S0981-9428(02)01464-X

How to Cite

Garau, G., Roggero, P. P. ., Diquattro, S. ., Garau, M., Pinna, M. V., & Castaldi, P. (2021). Innovative amendments derived from industrial and municipal wastes enhance plant growth and soil functions in potentially toxic elements-polluted environments. Italian Journal of Agronomy, 16(2). https://doi.org/10.4081/ija.2021.1777