Smart fertilizers: What should we mean and where should we go?

Submitted: 23 December 2020
Accepted: 19 February 2021
Published: 22 March 2021
Abstract Views: 7636
HTML: 870
PDF: 1786
Appendix: 188
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The current agricultural system faces several challenges, the most important being the ability to feed the increasing world population and mitigate climate change. In this context, the improvement of fertilizers’ agronomic efficiency while reducing their cost and environmental impact is one of the biggest tasks. Available literature shows that many efforts have been made to develop innovative fertilizers defined as ‘smart fertilizers’, for which, different interpretations and definitions have been used. This paper aims to define, classify, and describe the new frontier of the so-called smart fertilizers with a particular focus on field-scale studies on herbaceous species. Most of the analysed papers associate the ‘smart’ concept to the controlled and/or slow release of nutrients, using both terms as synonymous. Some others broadened the concept, including the controlled release of nutrients to reduce the environmental impact. Based on our critical analysis of the available literature, we conclude that a fertilizer can be considered ‘smart’ when applied to the soil, it allows control over the rate, timing, and duration of nutrients release. Our new definition is: ‘Smart fertilizer is any single or composed (sub)nanomaterial, multi-component, and/or bioformulation containing one or more nutrients that, through physical, chemical, and/or biological processes, can adapt the timing of nutrient release to the plant nutrient demand, enhancing the agronomic yields and reducing the environmental impact at sustainable costs when compared to conventional fertilizers’.

Highlights

- A smart fertilizer allows to control the rate, timing and duration of nutrients release.
- Nanofertilizers are powder or liquid formulations which involve the synthesis, design and use of materials at the nanoscale level.
- Composite fertilizers are formulations containing nutrients mixed or coated with one or more materials that exploit synergy among materials.
- Bioformulations are fertilizers containing active or dormant microorganisms capable to trigger physiological growth responses in plants.
- Limited information is available for smart fertilizers on herbaceous crops in open field conditions.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Abalos D, Sanchez-Martin L, Garcia-Torres L, van Groenigen JW, Vallejo A. 2014. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops. Sci. Total Environ. 490:880-8. DOI: https://doi.org/10.1016/j.scitotenv.2014.05.065
Abd El-Azeim MM, Sherif MA, Hussien MS, Haddad SA. 2020. Temporal impacts of different fertilization systems on soil health under arid conditions of potato monocropping. J. Soil Sci. Plant Nutr. 20:322-34. DOI: https://doi.org/10.1007/s42729-019-00110-2
Abdelsalam NR, Fouda MM, Abdel-Megeed A, Ajarem J, Allam AA, El-Naggar ME. 2019. Assessment of silver nanoparticles decorated starch and commercial zinc nanoparticles with respect to their genotoxicity on onion. Int. J. Biol. Macromol 133:1008-18. DOI: https://doi.org/10.1016/j.ijbiomac.2019.04.134
Adams C, Frantz J, Bugbee B. 2013. Macroâ€and micronutrientâ€release characteristics of three polymerâ€coated fertilizers: Theory and measurements. J. Soil Sci. Plant Nutr. 176:76-88. DOI: https://doi.org/10.1002/jpln.201200156
Al-Antary TA, Kahlel A, Ghidan A, Asoufi H. 2020. Effects of nanotechnology liquid fertilizers on fruit set and pods of broad bean (Vicia faba L.). Fresen. Environ. Bull, 29:4794-98.
Al-Uthery HW, Al-Shami QM. 2019. Impact of fertigation of nano NPK fertilizers, nutrient use efficiency and distribution in soil of potato (Solanum tuberosum L.). Plant Arch. 19:1087-96.
Akhtar SS, Amby DB, Hegelund JN, Fimognari L, Großkinsky DK, Westergaard JC, Müller R, Moelbak L, Liu F, Roitsch T. 2020. Bacillus licheniformis FMCH001 increases water use efficiency via growth stimulation in both normal and drought conditions. Front. Plant Sci. 11:297. DOI: https://doi.org/10.3389/fpls.2020.00297
Arora NK, Verma M, Mishra J. 2017. Rhizobial bioformulations: past, present and future. In: S. Mehnaz (ed.) Rhizotrophs: Plant growth promotion to bioremediation. Springer, Singapore, pp 69-99. DOI: https://doi.org/10.1007/978-981-10-4862-3_4
Azeem B, KuShaari K, Man ZB, Basit A, Thanh TH. 2014. Review on materials & methods to produce controlled release coated urea fertilizer. J. Control. Release, 181:11-21. DOI: https://doi.org/10.1016/j.jconrel.2014.02.020
Babalola OO. 2010. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 32:1559-1570. DOI: https://doi.org/10.1007/s10529-010-0347-0
Badawi FSF, Biomy AMM, Desoky AH. 2011. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions. Ann. Agric. Sci. 56:17-25. DOI: https://doi.org/10.1016/j.aoas.2011.05.005
Bahadar H, Maqbool F, Niaz K, Abdollahi M. 2016. Toxicity of nanoparticles and an overview of current experimental models. Iran. Biomed. J. 20:1-11.
Beig B, Niazi MBK, Jahan Z, Hussain A, Zia MH, Mehran MT. 2020. Coating materials for slow release of nitrogen from urea fertilizer: a review. J. Plant Nutr. 43:1510-33. DOI: https://doi.org/10.1080/01904167.2020.1744647
Bernardo MP, Guimarães GG., Majaron VF, Ribeiro C. 2018. Controlled release of phosphate from layered double hydroxide structures: dynamics in soil and application as smart fertilizer. ACS Sustain. Chem. Eng. 6:5152-61. DOI: https://doi.org/10.1021/acssuschemeng.7b04806
Berruti A, Borriello R, Orgiazzi A, Barbera AC, Lumini E, Bianciotto V. 2014. Arbuscular mycorrhizal fungi and their value for ecosystem management. In: O. Grillo (ed.) Biodiversity: The Dynamic Balance of the Planet. InTech, Rijeta, Croacia, pp 159-91. DOI: https://doi.org/10.5772/58231
Bhattacharyya PN, Jha DK. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28:1327-50. DOI: https://doi.org/10.1007/s11274-011-0979-9
Bi S, Barinelli V, Sobkowicz MJ. 2020. Degradable controlled release fertilizer composite prepared via extrusion: fabrication, characterization, and release mechanisms. Polymers 12:301. DOI: https://doi.org/10.3390/polym12020301
Bilgili U, Açikgöz E. 2011. Effects of slow-release fertilizers on turf quality in a turf mixture. Turk. J. Field Crops 16:130-6.
Bley H, Gianello C, Santos LDS, Selau LPR. 2017. Nutrient release, plant nutrition, and potassium leaching from polymer-coated fertilizer. Rev. Bras. Ciênc. 41:e0160142. DOI: https://doi.org/10.1590/18069657rbcs20160142
Bock E, Wilderer PA, Freitag A. 1988. Growth of Nitrobacter in the absence of dissolved oxygen. Water Res. 22:245-50. DOI: https://doi.org/10.1016/0043-1354(88)90085-1
Bonfante P, Genre A. 2010. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1:1-11. DOI: https://doi.org/10.1038/ncomms1046
Bouwman AF, Boumans LJM, Batjes NH. 2002. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochem. Cycles 16:1058. DOI: https://doi.org/10.1029/2001GB001811
Brahmaprakash GP, Sahu PK, Lavanya G, Gupta A, Nair SS, Gangaraddi V. 2020. Role of additives in improving efficiency of bioformulation for plant growth and development. Front. Soil Environ. Microbiol. 1:1-10. DOI: https://doi.org/10.1201/9780429485794-1
Bryant RJ, Anders M, McClung A. 2012. Impact of production practices on physicochemical properties of rice grain quality. J. Sci. Food Agric. 92:564-69. DOI: https://doi.org/10.1002/jsfa.4608
Bunquin MAB, Tandy, S, Beebout, SJ, Schulin, R 2017. Influence of soil properties on zinc solubility dynamics under different redox conditions in non–calcareous soils. Pedosphere 27:96-105. DOI: https://doi.org/10.1016/S1002-0160(17)60299-6
Byrne MP, Tobin JT, Forrestal PJ, Danaher M, Nkwonta CG, Richards K, Cummins E, Hogan AS, O’Callaghan TF. 2020. Urease and nitrification inhibitors—As mitigation tools for greenhouse gas emissions in sustainable dairy systems: a review. Sustainability 12:6018. DOI: https://doi.org/10.3390/su12156018
Cakmak I. 2000. Tansley Review No. 111: possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 146:185-205. DOI: https://doi.org/10.1046/j.1469-8137.2000.00630.x
Calabi-Floody M, Medina J, Rumpel C, Condron LM, Hernandez M, Dumont M, de la Luz Mora M. 2018. Smart fertilizers as a strategy for sustainable agriculture. Adv. Agron. 147:119-57. DOI: https://doi.org/10.1016/bs.agron.2017.10.003
Calabi-Floody M, Medina J, Suazo J, Ordiqueo M, Aponte H, Mora MDLL, Rumpel C. 2019. Optimization of wheat straw co-composting for carrier material development. Waste Manage. 98:37-49. DOI: https://doi.org/10.1016/j.wasman.2019.07.041
Callahan BP, Yuan Y, Wolfenden R. 2005. The burden borne by urease. J. Am. Chem. Soc. 127:10828-9. DOI: https://doi.org/10.1021/ja0525399
Cameron KC, Di HJ, Moir JL. 2013. Nitrogen losses from the soil/plant system: a review. Ann. Appl. Biol. 162:145-73. DOI: https://doi.org/10.1111/aab.12014
Cantarella H, Otto R, Soares JR, de Brito Silva AG. 2018. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Adv. Res. 13:19-27. DOI: https://doi.org/10.1016/j.jare.2018.05.008
Carreres R, Sendra J, Ballesteros R, Valiente EF, Quesada A, Carrasco D, Leganés F, de la Cuadra JG. 2003. Assessment of slow release fertilizers and nitrification inhibitors in flooded rice. Biol. Fertil. Soils 39:80-7. DOI: https://doi.org/10.1007/s00374-003-0684-4
Cazzato E, Tufarelli V, Ceci E, Stellacci AM, Laudadio V. 2012. Quality, yield and nitrogen fixation of faba bean seeds as affected by sulphur fertilization. Acta Agr. Scand. B-S P 62:732-8. DOI: https://doi.org/10.1080/09064710.2012.698642
Chen D, Freney JR, Rochester I, Constable GA, Mosier AR, Chalk PM. 2008b. Evaluation of a polyolefin coated urea (Meister) as a fertilizer for irrigated cotton. Nutr. Cycling Agroecosyst. 81:245-54. DOI: https://doi.org/10.1007/s10705-007-9160-0
Chen D, Suter H, Islam A, Edis R, Freney JR, Walker CN. 2008a. Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers. Soil Res. 46:289-301. DOI: https://doi.org/10.1071/SR07197
Chen J, Lü S, Zhang Z, Zhao X, Li X, Ning P, Liu M. 2018. Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci. Total Environ. 613:829-39. DOI: https://doi.org/10.1016/j.scitotenv.2017.09.186
Chhipa H. 2017. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 15:15-22. DOI: https://doi.org/10.1007/s10311-016-0600-4
Cordell D, White S. 2014. Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Annu. Rev. Environ. Resour. 39:161-88. DOI: https://doi.org/10.1146/annurev-environ-010213-113300
Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, Larese FF. 2009. Nanoparticle dermal absorption and toxicity: a review of the literature. Int. Arch. Occup. Environ. Health 82:1043-55. DOI: https://doi.org/10.1007/s00420-009-0458-x
Cruchaga S, Artola E, Lasa B, Ariz I, Irigoyen I, Moran JF, Aparicio-Tejo PM. 2011. Short term physiological implications of NBPT application on the N metabolism of Pisum sativum and Spinacea oleracea. J. Plant Physiol. 168:329-36. DOI: https://doi.org/10.1016/j.jplph.2010.07.024
Cunliffe M, Kertesz MA. 2006. Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils. Environ. Pollut. 144:228-37. DOI: https://doi.org/10.1016/j.envpol.2005.12.026
da Cruz DF, Bortoletto-Santos R, Guimarães GGF, Polito WL, Ribeiro C. 2017. Role of polymeric coating on the phosphate availability as a fertilizer: insight from phosphate release by castor polyurethane coatings. J. Agric. Food Chem. 65:5890-5. DOI: https://doi.org/10.1021/acs.jafc.7b01686
Dakora FD, Phillips DA. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35-47. DOI: https://doi.org/10.1023/A:1020809400075
Danaher M, Jordan K. 2013. Identification of existing and emerging chemical residue contamination concerns in milk. Irish J. Agr. Food Res. 52:173-83.
Dankers AC, Kuper CF, Boumeester AJ, Fabriek BO, Kooter IM, Gröllersâ€Mulderij M, Peter Tromp P, Nelissen I, Zondervanâ€Van Den Beuken EK, Vandebriel RJ. 2018. A practical approach to assess inhalation toxicity of metal oxide nanoparticles in vitro. J. Appl. Toxicol. 38:160-71. DOI: https://doi.org/10.1002/jat.3518
Delavaux CS, Smithâ€Ramesh LM, Kuebbing SE. 2017. Beyond nutrients: a metaâ€analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 98:2111-9. DOI: https://doi.org/10.1002/ecy.1892
DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. 2010. Nanotechnology in fertilizers. Nat. Nanotechnol. 5:91. DOI: https://doi.org/10.1038/nnano.2010.2
Devassine M, Henry F, Guerin P, Briand X. 2002. Coating of fertilizers by degradable polymers. Int. J. Pharm. 242:399-404. DOI: https://doi.org/10.1016/S0378-5173(02)00225-9
Dewdar M, Abbas M, Hassanin A, Aleem H. 2018. Effect of nano micronutrients and nitrogen foliar applications on sugar beet (Beta vulgaris L.) of quantity and quality traits in marginal soils in Egypt. Int. J. Curr. Microbiol. Appl. Sci. 7:4490-8. DOI: https://doi.org/10.20546/ijcmas.2018.708.475
Diez JA, Caballero R, Bustos A, Roman R, Cartagena MC, Vallejo A. 1996. Control of nitrate pollution by application of controlled release fertilizer (CRF), compost and an optimized irrigation system. Fertil. Res. 43:191–5. DOI: https://doi.org/10.1007/BF00747701
Diez JA, Caballero R, Roman R, Tarquis A, Cartagena MC, Vallejo A. 2000. Integrated fertilizer and irrigation management to reduce nitrate leaching in Central Spain. J. Environ. Qual. 29:1539-47. DOI: https://doi.org/10.2134/jeq2000.00472425002900050021x
Dimkpa CO, Bindraban PS. 2017. Nanofertilizers: new products for the industry? J. Agric. Food Chem. 66:6462-73. DOI: https://doi.org/10.1021/acs.jafc.7b02150
Donida MW, Rocha SC. 2002. Coating of urea with an aqueous polymeric suspension in a two-dimensional spouted bed. Dry. Technol. 20:685-704. DOI: https://doi.org/10.1081/DRT-120002824
Drury CF, Reynolds WD, Yang XM, McLaughlin NB, Welacky TW, Calder W, Grant CA. 2012. Nitrogen source, application time, and tillage effects on soil nitrous oxide emissions and corn grain yields. Soil Sci. Soc. Am. J. 76:1268-79. DOI: https://doi.org/10.2136/sssaj2011.0249
El-Kereti MA, El-feky SA, Khater MS, Osman YA, El-sherbini EA. 2013. ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant. Recent Pat. Food Nutr. Agric. 5:169-81. DOI: https://doi.org/10.2174/2212798405666131112142517
Erisman JW, Schaap M. 2004. The need for ammonia abatement with respect to secondary PM reductions in Europe. Environ. Pollut. 129:159-63. DOI: https://doi.org/10.1016/j.envpol.2003.08.042
Etesami H, Emami S, Alikhani HA. 2017. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects - a review. J. Soil Sci. Plant Nutr. 17:897-911. DOI: https://doi.org/10.4067/S0718-95162017000400005
Feng C, Lü S, Gao C, Wang X, Xu X, Bai X, Gao N, Liu M, Wu L. 2015. ‘Smart’ fertilizer with temperature-and pH-responsive behaviour via surface-initiated polymerization for controlled release of nutrients. ACS Sustain. Chem. Eng. 3:3157-66. DOI: https://doi.org/10.1021/acssuschemeng.5b01384
Follmer C. 2008. Insights into the role and structure of plant ureases. Phytochemistry 69:18-28. DOI: https://doi.org/10.1016/j.phytochem.2007.06.034
Fu J, Wang C, Chen X, Huang Z, Chen D. 2018. Classification research and types of slow controlled release fertilizers (SRFs) used-a review. Commun. Soil Sci. Plant Anal. 49:2219-30. DOI: https://doi.org/10.1080/00103624.2018.1499757
Gaind S, Nain L. 2015. Soil–phosphorus mobilization potential of phytate mineralizing fungi. J. Plant Nutr. 38:2159-75. DOI: https://doi.org/10.1080/01904167.2015.1014561
Geiser M, Jeannet N, Fierz M, Burtscher H. 2017. Evaluating adverse effects of inhaled nanoparticles by realistic in vitro technology. Nanomaterials 7:49. DOI: https://doi.org/10.3390/nano7020049
Gil-Ortiz R, Naranjo MÃ, Ruiz-Navarro A, Atares S, García C, Zotarelli L, San Bautista A, Vicente O. 2020a. Enhanced agronomic efficiency using a new controlled-released, polymeric-coated nitrogen fertilizer in rice. Plants 9:1183. DOI: https://doi.org/10.3390/plants9091183
Gil-Ortiz R, Naranjo MÃ, Ruiz-Navarro A, Caballero-Molada M, Atares S, García C, Vicente O. 2020b. New eco-friendly polymeric-coated urea fertilizers enhanced crop yield in wheat. Agronomy 10:438. DOI: https://doi.org/10.3390/agronomy10030438
Giroto AS, Fidélis SC, Ribeiro C. 2015. Controlled release from hydroxyapatite nanoparticles incorporated into biodegradable, soluble host matrixes. RSC Adv. 5:104179-86. DOI: https://doi.org/10.1039/C5RA17669G
Giroto AS, Guimarães GGF, Ribeiro C. 2018. A novel, simple route to produce urea: urea–formaldehyde composites for controlled release of fertilizers. J. Polym. Environ. 26:2448-58. DOI: https://doi.org/10.1007/s10924-017-1141-z
Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. 2010. Food security: the challenge of feeding 9 billion people. Science 327:812–8 DOI: https://doi.org/10.1126/science.1185383
Golden BR, Slaton NA, Norman RJ, Wilson CE, DeLong RE. 2009. Evaluation of polymerâ€coated urea for directâ€seeded, delayedâ€flood rice production. Soil Sci. Soc. Am. J. 73:375-83. DOI: https://doi.org/10.2136/sssaj2008.0171
Gomiero T. 2016. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability 8:281. DOI: https://doi.org/10.3390/su8030281
Gontia-Mishra I, Sapre S, Tiwari S. 2017. Zinc solubilizing bacteria from the rhizosphere of rice as prospective modulator of zinc biofortification in rice. Rhizosphere 3:185-90. DOI: https://doi.org/10.1016/j.rhisph.2017.04.013
Goswami M, Suresh DEKA. 2020. Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: A review. Pedosphere 30:40-61. DOI: https://doi.org/10.1016/S1002-0160(19)60839-8
Gough EC, Owen KJ, Zwart RS, Thompson JP. 2020. A systematic review of the effects of arbuscular mycorrhizal fungi on root-lesion nematodes, Pratylenchus spp. Front. Plant Sci. 11:923. DOI: https://doi.org/10.3389/fpls.2020.00923
Gray EJ, Smith DL. 2005. Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signalling processes. Soil Biol. Biochem. 37:395-412. DOI: https://doi.org/10.1016/j.soilbio.2004.08.030
Guardia G, Cangani MT, Andreu G, Sanz-Cobena A, García-Marco S, Ãlvarez JM, Recio-Huetos J, Vallejo A. 2017. Effect of inhibitors and fertigation strategies on GHG emissions, NO fluxes and yield in irrigated maize. Field Crops Res. 204:135-45. DOI: https://doi.org/10.1016/j.fcr.2017.01.009
Guardia G, Marsden KA, Vallejo A, Jones DL, Chadwick DR. 2018. Determining the influence of environmental and edaphic factors on the fate of the nitrification inhibitors DCD and DMPP in soil. Sci. Total Environ. 624:1202-12. DOI: https://doi.org/10.1016/j.scitotenv.2017.12.250
Guimarães GG, Mulvaney RL, Khan SA, Cantarutti RB, Silva AM. 2018. Comparison of urease inhibitor Nâ€(nâ€butyl) thiophosphoric triamide and oxidized charcoal for conserving ureaâ€N in soil. J. Soil Sci. Plant Nutr. 179:520-8. DOI: https://doi.org/10.1002/jpln.201500622
Guo YP, Wang HJ, Guo YJ, Guo LH, Chu LF, Guo CX. 2011. Fabrication and characterization of hierarchical ZSM-5 zeolites by using organosilanes as additives. Chem. Eng. J 166:391-400. DOI: https://doi.org/10.1016/j.cej.2010.10.057
Haderlein L, Jensen TL, Dowbenko RE, Blaylock AD. 2001. Controlled release urea as a nitrogen source for spring wheat in western Canada: Yield, grain N content, and N use efficiency. Sci. World J. 1:114-21. DOI: https://doi.org/10.1100/tsw.2001.309
Halvorson AD, Del Grosso SJ, Stewart CE. 2016. Manure and inorganic nitrogen affect trace gas emissions under semiâ€arid irrigated corn. J. Environ. Qual. 45:906-14. DOI: https://doi.org/10.2134/jeq2015.08.0426
Halvorson AD, Del Grosso SJ. 2013. Nitrogen placement and source effects on nitrous oxide emissions and yields of irrigated corn. J. Environ. Qual. 42:312-22. DOI: https://doi.org/10.2134/jeq2012.0315
Han Y, Chen S, Yang M, Zou H, Zhang Y. 2020. Inorganic matter modified water-based copolymer prepared by chitosan-starch-CMC-Na-PVAL as an environment-friendly coating material. Carbohydr. Polym. 234:115925. DOI: https://doi.org/10.1016/j.carbpol.2020.115925
Harder Nielsen T, Bonde TA, Sørensen J. 1998. Significance of microbial urea turnover in N cycling of three Danish agricultural soils. FEMS Microbiol. Ecol. 25:147-57. DOI: https://doi.org/10.1111/j.1574-6941.1998.tb00468.x
Harman GE. 2000. Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Dis. 84:377-93. DOI: https://doi.org/10.1094/PDIS.2000.84.4.377
Henke CR. 2000. Making a place for science: The field trial. Soc. Stud. Sci. 30:483-511. DOI: https://doi.org/10.1177/030631200030004001
Hergert GR, Ferguson C, Wortmann C, Shapiro C, Shaver T. 2011. Enhanced efficiency fertilizers: will they enhance my fertilizer efficiency. Proceedings of the 3rd Annual Crop Production Clinics, University of Nebraska-Lincoln Extension, United States.
Hoefler R, González-Barrios P, Bhatta M, Nunes JAR, Berro I, Nalin RS, Borges A, Covarrubias E, Diaz-Garcia L, Quincke M, Gutierrez L. 2020. Do spatial designs outperform classic experimental designs? J. Agric. Biol. Environ. Stat. 25:523-52. DOI: https://doi.org/10.1007/s13253-020-00406-2
Hou P, Li G, Wang S, Jin X, Yang Y, Chen X, Ding C, Liu Z, Ding Y. 2013. Methane emissions from rice fields under continuous straw return in the middle-lower reaches of the Yangtze River. J. Environ. Sci. 25:1874-81. DOI: https://doi.org/10.1016/S1001-0742(12)60273-3
Hric P, JanÄoviÄ J, Kovár P, Vozár Ľ. 2016. The effect of varying speed release of nutrients from fertilizers on growth-production process of turf. Acta Univ. Agric. Silvic. Mendel. Brun. 64:441-7. DOI: https://doi.org/10.11118/actaun201664020441
Hu F, Zhao C, Feng F, Chai Q, Mu Y, Zhang Y. 2017. Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea. Plant Soil 412:235-51. DOI: https://doi.org/10.1007/s11104-016-3063-2
Hu XK, Su F, Ju XT, Gao B, Oenema O, Christie P, Huang BX, Jiang RF, Zhang FS. 2013. Greenhouse gas emissions from a wheat–maize double cropping system with different nitrogen fertilization regimes. Environ. Pollut. 176:198-207. DOI: https://doi.org/10.1016/j.envpol.2013.01.040
Hummel Jr NW, Waddington DV. 1984. Sulfurâ€coated urea for turfgrass fertilization. Soil Sci. Soc. Am. J. 48:191-5. DOI: https://doi.org/10.2136/sssaj1984.03615995004800010035x
Ibrahim KA, Naz MY, Shukrullah S, Sulaiman SA, Ghaffar A, AbdEl-Salam NM. 2020. Nitrogen pollution impact and remediation through low cost starch based biodegradable polymers. Sci. Rep. 10: 5927. DOI: https://doi.org/10.1038/s41598-020-62793-3
Irfan SA, Razali R, KuShaari K, Mansor N, Azeem B, Versypt ANF. 2018. A review of mathematical modeling and simulation of controlled-release fertilizers. J. Control. Release 271:45-54. DOI: https://doi.org/10.1016/j.jconrel.2017.12.017
Jahangirian H, Rafiee-Moghaddam R, Jahangirian N, Nikpey B, Jahangirian S, Bassous N, Saleh B, Kalantari K, Webster TJ. 2020. Green synthesis of zeolite/Fe2O3 nanocomposites: toxicity & cell proliferation assays and application as a smart iron nanofertilizer. International Journal of Nanomedicine, 15:1005-20. DOI: https://doi.org/10.2147/IJN.S231679
Jang JR, Hong EM, Song I, Kang MS, Cho JY, Cho YK. 2016. Impact of Different Fertilizer Types on Nutrient Pollutant Loads from Rice Paddy Fields in South Korea. Irrig. Drain. 65:105-11. DOI: https://doi.org/10.1002/ird.2041
Jarosiewicz A, Tomaszewska M. 2003. Controlled-release NPK fertilizer encapsulated by polymeric membranes. J. Agric. Food Chem. 51:413-7. DOI: https://doi.org/10.1021/jf020800o
Jha Y. 2017. Potassium mobilizing bacteria: enhance potassium intake in paddy to regulates membrane permeability and accumulate carbohydrates under salinity stress. Braz. J. Biol. Sci. 4:333-44. DOI: https://doi.org/10.21472/bjbs.040812
Ji Y, Liu G, Ma J, Zhang G, Xu H, Yagi K. 2013. Effect of controlled-release fertilizer on mitigation of N2O emission from paddy field in South China: a multi-year field observation. Plant Soil 371:473-86. DOI: https://doi.org/10.1007/s11104-013-1700-6
Jiao X, Liang W, Chen L, Zhang H, Li Q, Wang P, Wen D. 2005. Effects of slow-release urea fertilizers on urease activity, microbial biomass, and nematode communities in an aquic brown soil. Sci. China Life Sci. 48:26. DOI: https://doi.org/10.1007/BF02889798
Kabala C, Karczewska A, Gałka B, Cuske M, Sowiński J. 2017. Seasonal dynamics of nitrate and ammonium ion concentrations in soil solutions collected using MacroRhizon suction cups. Environ. Monit. Assess. 189:304. DOI: https://doi.org/10.1007/s10661-017-6022-3
Kah M, Kookana RS, Gogos A, Bucheli TD. 2018. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13:677-84. DOI: https://doi.org/10.1038/s41565-018-0131-1
Kalia A, Sharma SP, Kaur H. 2019. Nanoscale fertilizers: harnessing boons for enhanced nutrient use efficiency and crop productivity. In: K.A. Abd-Elsalam, R. Prasad, (eds.) Nanobiotechnology Applications in Plant Protection. Springer, Cham, Switzerland, pp 191-208. DOI: https://doi.org/10.1007/978-3-030-13296-5_10
Khan MS, Zaidi A, Wani PA. 2009. Role of phosphate-solubilizing microorganisms in sustainable agriculture-a review. Agron. Sustain. Dev. 27:29-43. DOI: https://doi.org/10.1051/agro:2006011
Kandil EE, Abdelsalam NR, Aziz AAAE, Ali HM, Siddiqui MH. 2020. Efficacy of nanofertilizer, fulvic acid and boron fertilizer on sugar beet (Beta vulgaris L.) yield and quality. Sugar Tech 22:782–91. DOI: https://doi.org/10.1007/s12355-020-00837-8
Kang SM, Waqas M, Shahzad R, You YH, Asaf S, Khan MA, Lee KE, Joo GJ, Kim SJ, Lee IJ. 2017. Isolation and characterization of a novel silicate-solubilizing bacterial strain Burkholderia eburnea CS4-2 that promotes growth of japonica rice (Oryza sativa L. cv. Dongjin). J. Soil Sci. Plant Nutr. 63:233-41. DOI: https://doi.org/10.1080/00380768.2017.1314829
Kiss S, Simihăian M. 2002. Effect of soil urease inhibitors on germination, growth, and yield of plants. In: S. Kiss, M. Simihăian (eds.) Improving efficiency of urea fertilizers by inhibition of soil urease activity. Springer, Dordrecht, pp 251-319. DOI: https://doi.org/10.1007/978-94-017-1843-1_8
Klaic R, Giroto AS, Guimarães GG, Plotegher F, Ribeiro C, Zangirolami TC, Farinas CS. 2018. Nanocomposite of starch-phosphate rock bioactivated for environmentally-friendly fertilization. Miner. Eng. 128:230-7. DOI: https://doi.org/10.1016/j.mineng.2018.09.002
Kloepper JW, Schroth MN. 1978. Plant growth-promoting rhizobacteria on radishes. Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, Gilbert-Clarey, Tours, France, pp. 879–82.
Knight EC, Guertal EA, Wood CW. 2007. Mowing and nitrogen source effects on ammonia volatilization from turfgrass. Crop Sci. 47:1628-34. DOI: https://doi.org/10.2135/cropsci2006.09.0608
Knijnenburg JT, Hilty FM, Oelofse J, Buitendag R, Zimmermann MB, Cakmak I, Grobler AF. 2018. Nano- and Pheroid technologies for development of foliar iron fertilizers and iron biofortification of soybean grown in South Africa. Chem. Biol. Technol. Agric. 5:26. DOI: https://doi.org/10.1186/s40538-018-0138-8
Kudoyarova GR, Vysotskaya LB, Arkhipova TN, Kuzmina LY, Galimsyanova NF, Sidorova LV, Gabbasova IM, Melentiev AI, Veselov SY. 2017. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants. Acta Physiol. Plant. 39:253. DOI: https://doi.org/10.1007/s11738-017-2556-9
Kumar D, Devakumar C, Kumar R, Das A, Panneerselvam P, Shivay YS. 2010. Effect of neem-oil coated prilled urea with varying thickness of neem-oil coating and nitrogen rates on productivity and nitrogen-use efficiency of lowland irrigated rice under Indo-Gangetic plains. J. Plant Nutr. 33:1939-59. DOI: https://doi.org/10.1080/01904167.2010.512053
Kumar M, Bauddh K, Sainger M, Sainger PA, Singh RP. 2015. Enhancing efficacy of Azotobactor and Bacillus by entrapping in organic matrix for rice cultivation. Agroecol. Sustain. Food Syst. 39:907-23. DOI: https://doi.org/10.1080/21683565.2015.1050146
Kumar S, Bauddh K, Barman SC, Singh RP. 2014. Organic matrix entrapped bio-fertilizers increase growth, productivity, and yield of Triticum aestivum L. and transport of NO3–, NO2–, NH4+ and PO4–3 from soil to plant leaves. J. Agr. Sci. Tech. 16:315-29.
Kumar V. 2014. Characterization, bio-formulation development and shelf-life studies of locally isolated bio-fertilizer strains. Oct. Jour. Env. Res. 2:32-37.
Latef AAHA, Hashem A, Rasool S, Abd Allah EF, Alqarawi AA, Egamberdieva D, Jan S, Anjum NA Ahmad P. 2016. Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. J. Plant Biol. 59:407-26. DOI: https://doi.org/10.1007/s12374-016-0237-7
Lemaire G, Ciampitti I. 2020. Crop mass and N status as prerequisite covariables for unraveling nitrogen use efficiency across genotype-by-environment-by-management scenarios: a review. Plants 9:1309. DOI: https://doi.org/10.3390/plants9101309
León-Silva S, Arrieta-Cortes R, Fernández-Luqueño F, López-Valdez F. 2018. Design and production of nanofertilizers. In: F. López-Valdez, F. Fernández-Luqueño (eds.) Agricultural Nanobiotechnology. Springer, Cham, Switzerland, pp 17-31. DOI: https://doi.org/10.1007/978-3-319-96719-6_2
Li M, Yang JT, Yan LY, Shi Y. 2014. The effects of different amounts of controlled release fertilizer on the root growth and the filling rate in winter wheat. Adv. J. Food Sci. Technol. 6:358-61. DOI: https://doi.org/10.19026/ajfst.6.36
Li P, Lu J, Hou W, Pan Y, Wang Y, Khan MR, Ren T, Cong R, Li, X. 2017. Reducing nitrogen losses through ammonia volatilization and surface runoff to improve apparent nitrogen recovery of double cropping of late rice using controlled release urea. Environ. Sci. Pollut. Res. 24:11722-33. DOI: https://doi.org/10.1007/s11356-017-8825-8
Li Z, Liu Z, Zhang M, Li C, Li YC, Wan Y, Martin CG. 2020. Long-term effects of controlled-release potassium chloride on soil available potassium, nutrient absorption and yield of maize plants. Soil Till. Res. 196:104438. DOI: https://doi.org/10.1016/j.still.2019.104438
Lin D, Xing B. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut. 150:243-50. DOI: https://doi.org/10.1016/j.envpol.2007.01.016
Liu CH, Wu JY, Chang JS. 2008. Diffusion characteristics and controlled release of bacterial fertilizers from modified calcium alginate capsules. Bioresour. Technol. 99:1904-10. DOI: https://doi.org/10.1016/j.biortech.2007.03.029
Liu G, Zotarelli L, Li Y, Dinkins D, Wang Q, Ozores-Hampton M. 2014. Controlled-release and slow-release fertilizers as nutrient management tools. USA: US Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS.
Liu R, Lal R. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 514:131-9. DOI: https://doi.org/10.1016/j.scitotenv.2015.01.104
Liu X, Chen L, Hua Z, Mei S, Wang P, Wang S. 2020. Comparing ammonia volatilization between conventional and slow-release nitrogen fertilizers in paddy fields in the Taihu Lake region. Environ. Sci. Pollut. Res. 27:8386-94. DOI: https://doi.org/10.1007/s11356-019-07536-2
Lu P, Zhang M, Li C, Liu Z. 2012. Effect of acid-modified clay on the microstructure and performance of starch films. Polym. Plast. Technol. Eng. 51:1340-5. DOI: https://doi.org/10.1080/03602559.2012.702252
Lü S, Feng C, Gao C, Wang X, Xu X, Bai X, Gao N, Liu M. 2016. Multifunctional environmental smart fertilizer based on L-aspartic acid for sustained nutrient release. J. Agr. Food Chem. 64:4965-74. DOI: https://doi.org/10.1021/acs.jafc.6b01133
Ma Y. 2019. Seed coating with beneficial microorganisms for precision agriculture. Biotechnol. Adv. 37:107423. DOI: https://doi.org/10.1016/j.biotechadv.2019.107423
MÄ…cik M, Gryta A, FrÄ…c M. 2020. Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Adv. Agron. 162:31-87. DOI: https://doi.org/10.1016/bs.agron.2020.02.001
Maheshwari DK, Dubey RC, Agarwal M, Dheeman S, Aeron A, Bajpai VK. 2015. Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRP1 and Bacillus licheniformis KRB1. Ecol. Eng. 81:2727. DOI: https://doi.org/10.1016/j.ecoleng.2015.04.066
Majeed Z, Ramli NK, Mansor N, Man Z. 2015. A comprehensive review on biodegradable polymers and their blends used in controlled-release fertilizer processes. Rev. Chem. Eng. 31:69-95. DOI: https://doi.org/10.1515/revce-2014-0021
Malusá E, Sas-Paszt L, Ciesielska J. 2012. Technologies for beneficial microorganisms inocula used as biofertilizers. Sci. World J. 2012:491206 DOI: https://doi.org/10.1100/2012/491206
Mandlik R, Thakral V, Raturi G, Shinde S, Nikolić M, Tripathi DK, Sonah H, Deshmukh R. 2020. Significance of silicon uptake, transport, and deposition in plants. J. Exp. Bot. 71:6703-18. DOI: https://doi.org/10.1093/jxb/eraa301
Marchiol L. 2019. Nanofertilisers. An outlook of crop nutrition in the fourth agricultural revolution. Ital. J. Agron. 14:183-90. DOI: https://doi.org/10.4081/ija.2019.1367
Master Y, Laughlin RJ, Shavit U, Stevens RJ, Shaviv A. 2003. Gaseous nitrogen emissions and mineral nitrogen transformations as affected by reclaimed effluent application. J. Environ. Qual. 32:1204-11. DOI: https://doi.org/10.2134/jeq2003.1204
Mastronardi E, Tsae P, Zhang X, Monreal C, DeRosa MC. 2015. Strategic role of nanotechnology in fertilizers: potential and limitations. In: M. Rai, C. Ribeiro, L. Mattoso, N. Duran (eds.) Nanotechnologies in food and agriculture. Springer, Switzerland, Cham, pp 25-67. DOI: https://doi.org/10.1007/978-3-319-14024-7_2
Mehmood U, Inam-ul-Haq M, Saeed M, Altaf A, Azam F, Hayat S. 2018. A brief review on plant growth promoting rhizobacteria (PGPR): a key role in plant growth promotion. Plant Prot. 2:77-82.
Melia PM, Cundy AB, Sohi SP, Hooda PS, Busquets R. 2017. Trends in the recovery of phosphorus in bioavailable forms from wastewater. Chemosphere 186:381-95. DOI: https://doi.org/10.1016/j.chemosphere.2017.07.089
Menéndez S, Barrena I, Setien I, González-Murua C, Estavillo JM. 2012. Efficiency of nitrification inhibitor DMPP to reduce nitrous oxide emissions under different temperature and moisture conditions. Soil Biol. Biochem. 53:82-9. DOI: https://doi.org/10.1016/j.soilbio.2012.04.026
Menezes-Blackburn D, Jorquera M, Gianfreda L, Rao M, Greiner R, Garrido E, Mora ML. 2011. Activity stabilization of Aspergillus niger and Escherichia coli phytases immobilized on allophanic synthetic compounds and montmorillonite nanoclays. Bioresour. Technol. 102:9360-7. DOI: https://doi.org/10.1016/j.biortech.2011.07.054
Menezes-Blackburn D, Jorquera MA, Gianfreda L, Greiner R, de la Luz Mora M. 2014. A novel phosphorus biofertilization strategy using cattle manure treated with phytase–nanoclay complexes. Biol. Fertil. Soils 50:583-92. DOI: https://doi.org/10.1007/s00374-013-0872-9
Mérigout P, Lelandais M, Bitton F, Renou J-P, Briand X, Meyer C, Daniel-Vedele F. 2008. Physiological and transcriptomic aspects of urea uptake and assimilation in Arabidopsis plants. Plant Physiol. 147:1225-38. DOI: https://doi.org/10.1104/pp.108.119339
Mesias VSD, Agu ABS, Benablo PJL, Chen CH, Penaloza Jr DP. 2019. Coated NPK fertilizer based on citric acid-crosslinked chitosan/alginate encapsulant. J. Ecol. Eng. 20:1-12. DOI: https://doi.org/10.12911/22998993/113418
Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA. 2007. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Mijwel AK, Jassim HM. 2018. Effect of organic remnants compost and bioactiv fertilizer on growth and yield of potato. Plant Arch. 18:2389-97.
Mira AB, Cantarella H, Souza-Netto GJM, Moreira LA, Kamogawa MY, Otto R. 2017. Optimizing urease inhibitor usage to reduce ammonia emission following urea application over crop residues. Agric. Ecosyst. Environ. 248:105-12. DOI: https://doi.org/10.1016/j.agee.2017.07.032
Modolo LV, da-Silva CJ, Brandão DS, Chaves IS. 2018. A mini review on what we have learned about urease inhibitors of agricultural interest since mid-2000s. J. Adv. Res. 13:29-37. DOI: https://doi.org/10.1016/j.jare.2018.04.001
Modolo LV, de Souza AX, Horta LP, Araujo DP, de Fatima A. 2015. An overview on the potential of natural products as ureases inhibitors: A review. J. Adv. Res. 6:35-44. DOI: https://doi.org/10.1016/j.jare.2014.09.001
Mohammad Ghasemi V, Siavash Moghaddam S, Rahimi A, Pourakbar L, Popović-Djordjević J. 2020. Winter cultivation and nano fertilizers improve yield components and antioxidant traits of Dragon’s Head (Lallemantia iberica (MB) Fischer & Meyer). Plants 9:252. DOI: https://doi.org/10.3390/plants9020252
Mohanty S, Swain CK, Sethi SK, Dalai PC, Bhattachrayya P, Kumar A, Tripathi R, Shahid M, Panda BB, Kumar U, Lal B, Gautam P, Munda S, Nayak AK 2017. Crop establishment and nitrogen management affect greenhouse gas emission and biological activity in tropical rice production. Ecol. Eng. 104:80-98. DOI: https://doi.org/10.1016/j.ecoleng.2017.03.014
Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C. 2016.Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol. Fertil. Soils 52:423-37. DOI: https://doi.org/10.1007/s00374-015-1073-5
Nash P, Nelson K, Motavalli P. 2015. Reducing nitrogen loss with managed drainage and polymerâ€coated urea. J. Environ. Qual. 44:256-64. DOI: https://doi.org/10.2134/jeq2014.05.0238
Nassal D, Spohn M, Eltlbany N, Jacquiod S, Smalla K, Marhan S, Kandeler E. 2018. Effects of phosphorus-mobilizing bacteria on tomato growth and soil microbial activity. Plant Soil 427:17-37. DOI: https://doi.org/10.1007/s11104-017-3528-y
Naz MY, Sulaiman SA. 2016. Slow release coating remedy for nitrogen loss from conventional urea: a review. J. Control. Release 225:109-20. DOI: https://doi.org/10.1016/j.jconrel.2016.01.037
Nazari M, Smith DL. 2020. A PGPR-Produced bacteriocin for sustainable agriculture: a review of thuricin 17 characteristics and applications. Front Plant Sci. 11:916. DOI: https://doi.org/10.3389/fpls.2020.00916
Nisar S, Shehzad MR, Rafiq M, Kousar S, Abdul H. 2017. Production of clay polymers for fertilizer coating. Int. J. Chem. Biochem. Sci. 12:122-9.
Nogueira V, Lopes I, Rocha-Santos T, Santos AL, Rasteiro GM, Antunes F, Gonçalves F, Soares AMVM, Cunha A, Almeida A, Gomes NNCM, Pereira R. 2012. Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci. Total Environ. 424:344-50 DOI: https://doi.org/10.1016/j.scitotenv.2012.02.041
Norton JM, Ouyang Y. 2019. Controls and adaptive management of nitrification in agricultural soils. Front. Microbiol. 10:1931. DOI: https://doi.org/10.3389/fmicb.2019.01931
Pahl-Wostl C. 2009. A conceptual framework for analysing adaptive capacity and multi-level learningprocesses in resource governance regimes. Glob. Environ. Change19:354-65 DOI: https://doi.org/10.1016/j.gloenvcha.2009.06.001
Pampana S, Masoni A, Mariotti M, Ercoli L, Arduini I. 2018. Nitrogen fixation of grain legumes differs in response to nitrogen fertilisation. Exp. Agric. 54:66. DOI: https://doi.org/10.1017/S0014479716000685
Parihar M, Rakshit A., Meena VS, Gupta VK, Rana K, Choudhary M., Tiwari G, Mishra PK, Pattanayak A, Bisht JK, Jatav SS, Khati P., Jatav HS. 2020. The potential of arbuscular mycorrhizal fungi in C cycling: a review. Arch. Microbiol. 202:1581-96. DOI: https://doi.org/10.1007/s00203-020-01915-x
Parniske M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6:763-75. DOI: https://doi.org/10.1038/nrmicro1987
Pohshna C, Mailapalli DR, Laha T. 2020. Synthesis of Nanofertilizers by Planetary Ball Milling. In: E. Lichtfouse (ed.) Sustainable agriculture reviews. Springer, Cham, Switzerland, pp 75-112. DOI: https://doi.org/10.1007/978-3-030-33281-5_3
Pollock KM. 1988. Grass establishment and performance on a high country soil fertilised with nitrogen. New Zealand J. Agric. Res. 32:7-15. DOI: https://doi.org/10.1080/00288233.1989.10423471
Porcel R, Aroca R, Ruiz-Lozano JM. 2012. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev. 32:181-200. DOI: https://doi.org/10.1007/s13593-011-0029-x
Prasad R, Pandey R, Barman I. 2016. Engineering tailored nanoparticles with microbes: quo vadis? WIREs Nanomed. Nanobiotechnol. 8:316-30. DOI: https://doi.org/10.1002/wnan.1363
Premanandh J. 2011. Factors affecting food security and contribution of modern technologies in food sustainability. J. Sci. Food Agric. 91:2707-14. DOI: https://doi.org/10.1002/jsfa.4666
Pulat M, Yoltay N. 2016. Smart fertilizers: preparation and characterization of gelatin-based hydrogels for controlled release of MAP and AN fertilizers. Agrochimica 60:249-61.
Qiao J, Yu X, Liang X, Liu Y, Borriss R, Liu Y. 2017. Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC Microbiol. 17:131. DOI: https://doi.org/10.1186/s12866-017-1039-x
Rai A, Kumar S, Bauddh K, Singh N, Singh RP. 2017. Improvement in growth and alkaloid content of Rauwolfia serpentina on application of organic matrix entrapped biofertilizers (Azotobacter chroococcum, Azospirillum brasilense and Pseudomonas putida). J. Plant Nutr. 40:2237-47. DOI: https://doi.org/10.1080/01904167.2016.1222419
Rajan M, Shahena S, Chandran V, Mathew L. 2021. Controlled release of fertilizers—concept, reality, and mechanism. In: F.B. Lewu, T. Volova, S. Thomas, K.R. Rakhimol (eds.) Controlled release fertilizers for sustainable agriculture. Academic Press, pp 41-56. DOI: https://doi.org/10.1016/B978-0-12-819555-0.00003-0
Raliya R, Saharan V, Dimkpa C, Biswas P. 2017. Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J. Agric. Food Chem. 66:6487-503. DOI: https://doi.org/10.1021/acs.jafc.7b02178
Ramesh A, Sharma SK, Joshi OP, Khan IR. 2011. Phytase, phosphatase activity and P-nutrition of soybean as influenced by inoculation of Bacillus. Indian J. Microbiol. 51:94-9. DOI: https://doi.org/10.1007/s12088-011-0104-7
Ramli RA. 2019. Slow release fertilizer hydrogels: a review. Polym. Chem. 10:6073-90. DOI: https://doi.org/10.1039/C9PY01036J
Rao JK, Thompson JA, Sastry PVSS, Giller KE, Day JM. 1987. Measurement of N2-fixation in field-grown pigeonpea [Cajanus cajan (L.) Millsp.] using 15N-labelled fertilizer. Plant Soil 101:107-13. DOI: https://doi.org/10.1007/BF02371037
Rawluk CDL, Grant CA, Racz GJ. 2001. Ammonia volatilization from soils fertilized with urea and varying rates of urease inhibitor NBPT. Can. J. Soil Sci. 81:239-46. DOI: https://doi.org/10.4141/S00-052
Real-Guerra R, Stanisçuaski F, Carlini CR. 2013. Soybean urease: over a hundred years of knowledge. In: J.E. Board (ed.), A comprehensive survey of international soybean research – Genetics, physiology, agronomy and nitrogen relationships, InTech, Croatia, pp 317-40. DOI: https://doi.org/10.5772/52106
Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ. 2012. Global agriculture and nitrous oxide emissions. Nat Clim Change 2:410–6 DOI: https://doi.org/10.1038/nclimate1458
Rindt DW, Blouin GM, Getsinger JG. 1968. Sulfur coating on nitrogen fertilizer to reduce dissolution rate. J. Agric. Food Chem. 16:773-8. DOI: https://doi.org/10.1021/jf60159a015
Robbins J. 2005. Slow-release fertilizers as tools. IFA International Workshop on Enhanced-Efficiency Fertilizers. Frankfurt, Germany, 28–39 June 2005.
Rodrigues JM, Lasa B, Aparicio-Tejo PM, González-Murua C, Marino D. 2018. 3, 4-Dimethylpyrazole phosphate and 2-(N-3, 4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture nitrification inhibitors: quantification in plant tissues and toxicity assays. Sci. Total Environ. 624:1180-6. DOI: https://doi.org/10.1016/j.scitotenv.2017.12.241
Saber WIA, Ghanem KM, El-Hersh MS. 2009. Rock phosphate solubilization by two isolates of Aspergillus niger and Penicillium sp. and their promotion to mung bean plants. Res. J. Microbiol. 4:235-50. DOI: https://doi.org/10.3923/jm.2009.235.250
Sahai P, Sinha VB, Dutta R. 2019. Bioformulation and nanotechnology in pesticide and fertilizer delivery system for eco-friendly agriculture: a review. Sci. Agric. 3:2-10. DOI: https://doi.org/10.31080/ASAG.2019.03.0675
Saleh K, Steinmetz D, Hemati M. 2003. Experimental study and modeling of fluidized bed coating and agglomeration. Powder Technol. 130:116-23. DOI: https://doi.org/10.1016/S0032-5910(02)00254-1
Sanderson KR, Fillmore SAE. 2012. Slow-release nitrogen fertilizer in carrot production on Prince Edward Island. Can. J. Plant Sci. 92:1223-8. DOI: https://doi.org/10.4141/cjps2011-201
Santi LP, Goenadi DH. 2017. Solubilization of silicatefrom quartz mineral by potential silicate solubilizing bacteria. Menara Perkebunan 85:95-104. DOI: https://doi.org/10.22302/iribb.jur.mp.v85i2.247
Saranya K, Krishnan PS, Kumutha K, French J. 2011. Potential for biochar as an alternate carrier to lignite for the preparation of biofertilizers in India. Int. J. Agric. Environ. Biotechnol. 4:167-72.
Sarkar S, Datta SC, Biswas DR. 2014. Synthesis and characterization of nanoclay–polymer composites from soil clay with respect to their waterâ€holding capacities and nutrientâ€release behaviour. J. Appl. Polym. Sci. 131:39951. DOI: https://doi.org/10.1002/app.39951
Sattar A, Naveed M, Ali M, Zahir ZA, Nadeem SM, Yaseen M, Meena VS, Farooq M, Singh R, Rahman M, Meena HN. 2019. Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Appl. Soil Ecol. 133:146-59. DOI: https://doi.org/10.1016/j.apsoil.2018.09.012
Schneider KD, Van Straaten P, De Orduña RM, Glasauer S, Trevors J, Fallow D, Smith PS. 2010. Comparing phosphorus mobilization strategies using Aspergillus niger for the mineral dissolution of three phosphate rocks. J. Appl. Microbiol. 108:366-74. DOI: https://doi.org/10.1111/j.1365-2672.2009.04489.x
Scott N, Chen H. 2013. Nanoscale science and engineering for agriculture and food systems. Ind. Biotechnol. 9:17-8. DOI: https://doi.org/10.1089/ind.2013.1555
Senna AM, Botaro VR. 2017. Biodegradable hydrogel derived from cellulose acetate and EDTA as a reduction substrate of leaching NPK compound fertilizer and water retention in soil. J. Control. Release 260:194-201. DOI: https://doi.org/10.1016/j.jconrel.2017.06.009
Shan L, He Y, Chen J, Huang Q, Lian X, Wang H, Liu Y. 2015b. Nitrogen surface runoff losses from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. Agric. Water Manag. 159:255-63. DOI: https://doi.org/10.1016/j.agwat.2015.06.008
Shan L, He Y, Chen J, Huang Q, Wang H. 2015a. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. J. Environ. Sci. 38:14-23. DOI: https://doi.org/10.1016/j.jes.2015.04.028
Shaviv A, Mikkelsen RL. 1993. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation-A review. Fert. Res. 35:1-12. DOI: https://doi.org/10.1007/BF00750215
Shaviv A, Raban S, Zaidel E. 2001. Modeling controlled nutrient release from polymer coated fertilizers: Diffusion release from single granules. Environ. Sci. Technol. 37:2251-6. DOI: https://doi.org/10.1021/es011462v
Shaviv A. 2000. Advances in controlled release fertilizers. Adv. Agron. 71:1-49. DOI: https://doi.org/10.1016/S0065-2113(01)71011-5
Shen Y, Zhou J, Du C. 2019. Development of a polyacrylate/silica nanoparticle hybrid emulsion for delaying nutrient release in coated controlled-release urea. Coatings 9:88. DOI: https://doi.org/10.3390/coatings9020088
Shi N, Zhang Y, Li Y, Luo J, Gao X, Jing Y, Bo L. 2018. Water pollution risk from nitrate migration in the soil profile as affected by fertilization in a wheat-maize rotation system. Agric. Water Manag. 210:124-9. DOI: https://doi.org/10.1016/j.agwat.2018.08.006
Shitole AV, Gade RM, Bandgar MS, Wavare SH, Belkar YK. 2014. Utilization of spent mushroom substrate as carrier for biocontrol agent and biofertilizer. Bioscan 9:271-5.
Shoji S. 2005. Innovative use of controlled availability fertilizers with high performance for intensive agriculture and environmental conservation. Sci. China Life Sci. 48:912-20.
Shrivastava M, Srivastava PC, D’Souza SF. 2018. Phosphate-solubilizing microbes: diversity and phosphates solubilization mechanism. In: V. Meena (ed.) Role of rhizospheric microbes in soil. Springer, Singapore pp 137-165. DOI: https://doi.org/10.1007/978-981-13-0044-8_5
Silva AG, Sequeira CH, Sermarini RA., Otto R. 2017. Urease inhibitor NBPT on ammonia volatilization and crop productivity: A metaâ€analysis. Agron. J. 109:1-13. DOI: https://doi.org/10.2134/agronj2016.04.0200
Singh B, Satyanarayana T. 2012. Plant growth promotion by phytases and phytase-producing microbes due to amelioration in phosphorus availability. In: T. Satyanarayana, B.N. Johri, A. Prakash (eds.) Microorganisms in sustainable agriculture and biotechnology. Springer, Dordrecht pp 3-15. DOI: https://doi.org/10.1007/978-94-007-2214-9_1
Sivasakthi S, Usharani G, Saranraj P. 2014. Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: a review. Afr. J. Agric. Res. 9:1265-77.
Sofo A, Scopa A, Manfra M, De Nisco M, Tenore G, Troisi J, Di Fiori R, Novellino E. 2011. Trichoderma harzianum strain T-22 induces changes in phytohormone levels in cherry rootstocks (Prunus cerasus × P. canescens). Plant Growth Regul. 65:421-5. DOI: https://doi.org/10.1007/s10725-011-9610-1
Souza CF, Faez R, Bacalhau FB, Bacarin MF, Pereira TS. 2017. In situ monitoring of a controlled release of fertilizers in lettuce crop. Eng. Agríc. 37:656-64. DOI: https://doi.org/10.1590/1809-4430-eng.agric.v37n4p656-664/2017
Steiner C, Garcia M, Zech W. 2009 Effects of charcoal as slow release nutrient carrier on n-p-k dynamics and soil microbial population: pot experiments with ferralsol substrate. In: W.I. Woods, W.G. Teixeira, J. Lehmann, C. Steiner, A. WinklerPrins, L. Rebellato (eds.) Amazonian Dark Earths: Wim Sombroek’s Vision. Springer, Berlin, pp 325-38. DOI: https://doi.org/10.1007/978-1-4020-9031-8_17
Suganya A, Saravanan A, Manivannan N. 2020. Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Commun. Soil Sci. Plant Anal. 51:2001-21. DOI: https://doi.org/10.1080/00103624.2020.1820030
Sun H, Zhang H, Min J, Feng Y, Shi W. 2016. Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Paddy Water Environ. 14:105-11. DOI: https://doi.org/10.1007/s10333-015-0482-2
Sun H, Zhou S, Zhang J, Zhang X, Wang C. 2020. Year-to-year climate variability affects methane emission from paddy fields under irrigated conditions. Environ. Sci. Pollut. Res. 27:14780–9. DOI: https://doi.org/10.1007/s11356-020-07951-w
Surendhiran D, Cui H, Lin L. 2020. Mode of transfer, toxicity and negative impacts of engineered nanoparticles on environment, human and animal health. In: C.M. Hussain (ed.) The ELSI handbook of nanotechnology, pp 165-204. DOI: https://doi.org/10.1002/9781119592990.ch9
Suresh BG, Kumari S, Singh AK, Singla A, Paul A, Masih S, Masih H. 2018. Bio-formulation of halotolerant phosphate solubilizing Enterobacter cloacae HFZ-H4 strain to screen different carrier materials and their shelf life Study. Int. J. Curr. Microbiol. App. Sci 7:2373-80. DOI: https://doi.org/10.20546/ijcmas.2018.701.285
Taghizadeh Y, Jalilian J, Moghaddam SS. 2019. Do Fertilizers and Irrigation Disruption Change Some Physiological Traits of Safflower? J. Plant Growth Regul. 38:1439-48. DOI: https://doi.org/10.1007/s00344-019-09946-5
Taimooz SH. 2018. Behavior of some nanomaterials in improving the growth of onion plant, Allium cepa and its effect on Pythium aphanidermatum. Plant Arch. 18:857-62.
Tao S, Liu J, Jin K, Qiu X, Zhang Y, Ren X, Hu S. 2011. Preparation and characterization of triple polymerâ€coated controlledâ€release urea with waterâ€retention property and enhanced durability. J. Appl. Polym. Sci. 120:2103-11. DOI: https://doi.org/10.1002/app.33366
Tewari S, Sharma S. 2020. Rhizobial exopolysaccharides as supplement for enhancing nodulation and growth attributes of Cajanus cajan under multi-stress conditions: A study from lab to field. Soil Till. Res. 198:104545. DOI: https://doi.org/10.1016/j.still.2019.104545
Thompson H. 2012. Food science deserves a place at the table – US agricultural research chief aims to raise the profile of farming and nutrition science. Nature, Available online: https://www.nature.com/news/food-science-deserves-a-place-at-the-table-1.10963 (accessed on 23 Novembre 2020). DOI: https://doi.org/10.1038/nature.2012.10963
Tilman D, Socolow, R, Foley, J A, Hill, J, Larson, E, Lynd, L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R. 2009. Beneficial biofuels—the food, energy, and environment trilemma. Science 325:270-1. DOI: https://doi.org/10.1126/science.1177970
Timilsena YP, Adhikari R, Casey P, Muster T, Gill H, Adhikari B. 2015. Enhanced efficiency fertilisers: a review of formulation and nutrient release patterns. J. Sci. Food Agric. 95:1131-42. DOI: https://doi.org/10.1002/jsfa.6812
Treinyte J, Grazuleviciene V, Paleckiene R, Ostrauskaite J, Cesoniene L. 2018. Biodegradable polymer composites as coating materials for granular fertilizers. J. Polym. Environ. 26:543-54. DOI: https://doi.org/10.1007/s10924-017-0973-x
Trenkel ME. 1997. Controlled-release and stabilized fertilizers in agriculture. Paris: International Fertilizer Industry Association.
Trenkel ME. 2010. Slow-and controlled-release and stabilized fertilizers: An option for enhancing nutrient use efficiency in agriculture in agriculture. Paris: International Fertilizer Industry Association (IFA).
Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21:573. DOI: https://doi.org/10.3390/molecules21050573
Vempati RK, Hegde RS, Sloan JJ. 2011. U.S. Patent No. 8,034,147. Washington, DC: U.S. Patent and Trademark Office.
Vidyalakshmi R, Paranthaman R, Bhakyaraj R. 2009. Sulphur oxidizing bacteria and pulse nutrition - A review. World J. Agric. Sci. 5:270-8.
Wang J, Zhao Y, Zhang J, Zhao W, Müller C, Cai Z. 2017. Nitrification is the key process determining N use efficiency in paddy soils. J. Plant Nutr. Soil Sci. 180:648-58. DOI: https://doi.org/10.1002/jpln.201700130
Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B. 2012. Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ. Sci. Technol. 46:4434-41. DOI: https://doi.org/10.1021/es204212z
Xie L, Liu M, Ni B, Wang Y. 2012. New environment-friendly use of wheat straw in slow-release fertilizer formulations with the function of superabsorbent. Ind. Eng. Chem. Res. 51:3855-62. DOI: https://doi.org/10.1021/ie2016043
Xie L, Liu M, Ni B, Zhang X, Wang Y. 2011. Slow-release nitrogen and boron fertilizer from a functional superabsorbent formulation based on wheat straw and attapulgite. Chem. Eng. J. 167:342-8. DOI: https://doi.org/10.1016/j.cej.2010.12.082
Yang G, Ji H, Liu H, Zhang Y, Chen L, Zheng J, Guo Z, Sheng J. 2020. Assessment of productivity, nutrient uptake and economic benefits of rice under different nitrogen management strategies. PeerJ 8:e9596. DOI: https://doi.org/10.7717/peerj.9596
Yang S, Peng S, Xu J, He Y, Wang Y. 2015. Effects of water saving irrigation and controlled release nitrogen fertilizer managements on nitrogen losses from paddy fields. Paddy Water Environ. 13:71-80 DOI: https://doi.org/10.1007/s10333-013-0408-9
Yang Y, He C, Huang L, Ban Y, Tang M. 2017. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PloS one 12:e0182264. DOI: https://doi.org/10.1371/journal.pone.0182264
Ye Y, Liang X, Chen Y, Liu J, Gu J, Guo R, Li L. 2013. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crop. Res. 144:212-24. DOI: https://doi.org/10.1016/j.fcr.2012.12.003
Zanin L, Tomasi N, Zamboni A, Varanini Z, Pinton R. 2015. The urease inhibitor NBPT negatively affects DUR3-mediated uptake and assimilation of urea in maize roots. Front. Plant Sci. 6:1007. DOI: https://doi.org/10.3389/fpls.2015.01007
Zhang J, Chen H, Wang A. 2006. Study on superabsorbent composite. IV. Effects of organification degree of attapulgite on swelling behaviors of polyacrylamide/organo-attapulgite composites. Eur. Polym. J. 42:101-8. DOI: https://doi.org/10.1016/j.eurpolymj.2005.06.029
Zhang S, Yang Y, Gao B, Wan Y, Li YC, Zhao C. 2016. Bio-based interpenetrating network polymer composites from locust sawdust as coating material for environmentally friendly controlled-release urea fertilizers. J. Agric. Food Chem. 64:5692-700. DOI: https://doi.org/10.1021/acs.jafc.6b01688
Zhao B, Dong S, Zhang J, Liu P. 2013. Effects of controlled-release fertiliser on nitrogen use efficiency in summer maize. PLoS One 8:e70569. DOI: https://doi.org/10.1371/journal.pone.0070569
Zhou T, Wang Y, Huang S, Zhao Y. 2018. Synthesis composite hydrogels from inorganic-organic hybrids based on leftover rice for environment-friendly controlled-release urea fertilizers. Sci. Total Environ. 615:422-30. DOI: https://doi.org/10.1016/j.scitotenv.2017.09.084
Zulfiqar F, Navarro M, Ashraf M, Akram NA, Munné-Bosch S. 2019. Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Sci. 289:110270. DOI: https://doi.org/10.1016/j.plantsci.2019.110270
Zvomuya F, Rosen CJ. 2001. Evaluation of polyolefin-coated urea for potato production on a sandy soil. HortScience 36:1057-60. DOI: https://doi.org/10.21273/HORTSCI.36.6.1057

How to Cite

Raimondi, G., Maucieri, C., Toffanin, A., Renella, G., & Borin, M. (2021). Smart fertilizers: What should we mean and where should we go?. Italian Journal of Agronomy, 16(2). https://doi.org/10.4081/ija.2021.1794