Effect of Fucus extract and biomass enriched with Cu(II) and Zn(II) ions on the growth of garden cress (Lepidium sativum) under laboratory conditions

Submitted: 31 December 2020
Accepted: 15 February 2021
Published: 25 June 2021
Abstract Views: 1027
HTML: 27
PDF: 569
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

In the present study, brown seaweed - Fucus vesiculosus was used as a raw material for the preparation of bio-products for sustainable agriculture. Biosorption was applied to produce fertilizer additives with microelements. F. vesiculosus was enriched with Cu(II) and Zn(II) ions. Biostimulants of plant growth were obtained by seaweed extraction with potassium hydroxide. Different doses of enriched F. vesiculosus (1, 2, 4, 6 mg/per Petri dish) and concentrations of seaweed extract (2.5, 5 and 10%) were examined in germination test on garden cress (Lepidium sativum). The effect of both algal products on the plant length, RGB parameters in leaves and biomass multielement composition was examined. Results showed that the biomass enrichment did not influence plant length and RGB parameters. Taking into account these two parameters, the best results were obtained in the group treated with natural F. vesiculosus (higher than in the control group, treated with distilled water). Enriched F. vesiculosus biofortified garden cress with Cu and Zn. In the case of Fucus extract, 5% concentration increased plant length and the value of RGB parameters when compared with the control group. Also this extract concentration resulted in elevated content of micro- and macroelements in Lepidium sativum. Seaweed extract is recommended for further research as biostimulant of plant growth.

Highlights
- Fucus vesiculosus is a valuable raw material for agriculture.
- Fucus vesiculosus extract can act as biostimulants of plant growth.
- Fucus vesiculosus enriched with microelements via biosorption can be used as a fertilizing material providing plants with these nutrients.
- Fucus products can biofortify edible plants in essential microelements.
- Fucus extracts can enhance plant length and chlorophyll content.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Ahmady-Asbchin S, Andres Y, Gerente C, Le Cloirec P, 2009. Natural seaweed waste as sorbent for heavy metal removal from solution. Environ. Technol. 30:755-62. DOI: https://doi.org/10.1080/09593330902919401
Ahmady-Asbchin S, Mohammadi M, 2011. Biosorption of copper ions by marine brown alga Fucus vesiculosus. J. Biol. Environ. Sci. 5:121-7.
Ahmady-Asbchin S, Andrès Y, Gérente C, Le Cloirec P, 2008. Biosorption of Cu(II) from aqueous solution by Fucus serratus: Surface characterization and sorption mechanisms. Bioresour. Technol. 99:6150-5. DOI: https://doi.org/10.1016/j.biortech.2007.12.040
Ali MM, Al-Ani A, Eamus D, Tan DKY, 2012. A new image processing based technique to determine chlorophyll in plants. Am.-Eur. J. Agric. Environ. Sci. 12:1323-8.
Bădescu IS, Bulgariu D, Bulgariu L, 2017. Alternative utilization of algal biomass (Ulva sp.) loaded with Zn(II) ions for improving of soil quality. J. Appl. Phycol. 29:1069-79. DOI: https://doi.org/10.1007/s10811-016-0997-y
Balina K, Romagnoli F, Blumberga D, 2016. Chemical composition and potential use of Fucus vesiculosus from Gulf of Riga. En. Proc. 95:43-9. DOI: https://doi.org/10.1016/j.egypro.2016.09.010
Bikovens O, Ponomarenko J, Janceva S, Lauberts M, Vevere L, Telysheva G, 2017. Development of the approaches for complex utilization of brown algae (Fucus vesiculosus) biomass for the obtaining of value-added products. pp. 222-225 in Proceedings of the 8th International Scientific Conference Rural Development, 23-24.11.2017, Aleksandras Stulginskis University, Kaunas, Lithuania. DOI: https://doi.org/10.15544/RD.2017.091
Brinza L, Geraki K, Cojocaru C, Holdt SL, Neamtu M, 2020. Baltic Fucus vesiculosus as potential bio-sorbent for Zn removal: Mechanism insight. Chemosphere 238:124652. DOI: https://doi.org/10.1016/j.chemosphere.2019.124652
Bulgariu L, 2020. Efficient use of algae biomass loaded with essential metal ions in the manufacture of feed additives. J. Appl. Phycol. 32:1779-88. DOI: https://doi.org/10.1007/s10811-020-02115-2
Catarino MD, Silva AMS, Cardoso SM, 2018. Phycochemical constituents and biological activities of Fucus spp. Marine Drugs 16:249. DOI: https://doi.org/10.3390/md16080249
Chaudhuri A, Mitra M, Schwarz JG, Schiewer S, 2009. Copper, zinc, nickel, and cobalt biosorption potential of Fucus vesiculosus (Phaeophyceae) and Gracilaria tikvahiae (Rhodophyta). Water Practice Technol 4:wpt2009039. DOI: https://doi.org/10.2166/wpt.2009.039
Crouch IJ, van Staden J, 1993. Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regul. 13:21-9. DOI: https://doi.org/10.1007/BF00207588
Davis TA, Volesky B, Mucci A, 2003. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 37:4311-30. DOI: https://doi.org/10.1016/S0043-1354(03)00293-8
Farvin KHS, Jacobsen C, 2013. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem. 138:1670-81. DOI: https://doi.org/10.1016/j.foodchem.2012.10.078
Heffernan N, Smyth TJ, FitzGerald RJ, Soler-Vila A, Brunton N, 2014. Antioxidant activity and phenolic content of pressurised liquid and solid–liquid extracts from four Irish origin macroalgae. Int. J. Food Sci. Technol. 49:1765-72. DOI: https://doi.org/10.1111/ijfs.12512
Hong DD, Hien HM, Son PN, 2007. Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J. Appl. Phycol. 19:817-26. DOI: https://doi.org/10.1007/s10811-007-9228-x
Ivanova EM, Kholodova VP, Kuznetsov VlV, 2010. Biological effects of high copper and zinc concentrations and their interaction in rapeseed plants. Russ. J. Plant Physiol. 57:806-14. DOI: https://doi.org/10.1134/S1021443710060099
Izydorczyk G, Sienkiewicz-Cholewa U, Baśladyńska S, Kocek D, Mironiuk M, Chojnacka K, 2020. New environmentally friendly bio-based micronutrient fertilizer by biosorption: From laboratory studies to the field. Sci. Total Environ. 710:136061. DOI: https://doi.org/10.1016/j.scitotenv.2019.136061
Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B, 2009. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 28:386-99. DOI: https://doi.org/10.1007/s00344-009-9103-x
Latique S, Chernane H, Mansori M, El Kaoua M, 2013. Seaweed liquid fertilizer effect on physiological and biochemical parameters of bean plant (Phaesolus vulgaris variety paulista) under hydroponic system. Eur. Sci. J. 9:174-91.
Latique S, Aymen EM, Halima C, Chérif H, Mimoun EK, 2017. Alleviation of salt stress in durum wheat (Triticum durum L.) seedlings through the application of liquid seaweed extracts of Fucus spiralis. Comm. Soil Sci. Plant Anal. 48:2582-93. DOI: https://doi.org/10.1080/00103624.2017.1416136
Mæhre HK, Malde MK, Eilertsen KE, Elvevoll EO, 2014. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J. Sci. Food Agric. 94:3281-90. DOI: https://doi.org/10.1002/jsfa.6681
Michalak I, Chojnacka K, 2010. The new application of biosorption properties of Enteromorpha prolifera. Appl. Biochem. Biotechnol. 160:1540-56. DOI: https://doi.org/10.1007/s12010-009-8635-7
Michalak I, Tuhy Å, Chojnacka K, 2014. Extraction of seaweed with potassium lye. Przem. Chem. 93:771-4.
Mzibra A, Aasfar A, Benhima R, Khouloud M, Boulif R, Douira A, Bamouh A, Kadmiri IM, 2021. Biostimulants derived from Moroccan seaweeds: seed germination metabolomics and growth promotion of tomato plant. J. Plant Growth Regul. 40:353–70. DOI: https://doi.org/10.1007/s00344-020-10104-5
Paiva L, Lima E, Patarra RF, Neto AI, Baptista J, 2014. Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chem. 164:128-35. DOI: https://doi.org/10.1016/j.foodchem.2014.04.119
Rathore SS, Chaudhary DR, Boricha GN, Ghosh A, Bhatt BP, Zodape ST, Patolia JS, 2009. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. South Afr. J. Bot. 75:351-5. DOI: https://doi.org/10.1016/j.sajb.2008.10.009
Rincón J, Gonzólez F, Ballester A, Blázquez ML, Muñoz JA, 2005. Biosorption of heavy metals by chemically-activated alga Fucus vesiculosus. J. Chem. Technol. Biotechnol. 80:1403-7. DOI: https://doi.org/10.1002/jctb.1342
Rioux LE, Turgeon SL, Beaulieu M, 2007. Characterization of polysaccharides extracted from brown seaweeds. Carboh. Pol. 69:530-7. DOI: https://doi.org/10.1016/j.carbpol.2007.01.009
Rodriguez-Jasso RM, Mussatto SI, Pastrana L, Aguilar CN, Teixeira JA, 2014. Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes. Chem. Papers 68:203-9. DOI: https://doi.org/10.2478/s11696-013-0430-9
Romera E, Gonzólez F, Ballester A, Blázquez ML, Muñoz JA, 2008. Biosorption of heavy metals by Fucus spiralis. Bioresour. Technol. 99:4684-93. DOI: https://doi.org/10.1016/j.biortech.2007.09.081
Ronen E, 2007. Microelements in agriculture. Pract. Hydrop. Greenhous. 6:39-48.
Rupérez P, 2002. Mineral content of edible marine seaweeds. Food Chem. 79:23-6. DOI: https://doi.org/10.1016/S0308-8146(02)00171-1
Salcedo MF, Colman SL, Mansilla AY, Martinez MA, Fiol DF, Alvarez VA, Casalongue CA, 2020. Amelioration of tomato plants cultivated in organic-matter impoverished soil by supplementation with Undaria pinnatifida. Algal Res. 46:101785. DOI: https://doi.org/10.1016/j.algal.2019.101785
Sharma SHS, Lyons G, McRoberts C, McCall D, Carmichael E, Andrews F, Swan R, McCormack R, Mellon R, 2012. Biostimulant activity of brown seaweed species from Strangford Lough: compositional analyses of polysaccharides and bioassay of extracts using mung bean (Vigno mungo L.) and pak choi (Brassica rapa chinensis L.). J. Appl. Phycol. 24:1081-91. DOI: https://doi.org/10.1007/s10811-011-9737-5
Shakya K, Chettri MK, Sawidis T, 2008. Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses. Arch. Environ. Contam. Toxicol. 54:412-21. DOI: https://doi.org/10.1007/s00244-007-9060-y
Suzuki T, Murase H, Honamin N, 1999. Non-destructive growth measurement cabbage pug seedlings population by image information. J. Agricult. Mechan. Assoc. 61:45-51.
Tierney MS, Smyth TJ, Hayes M, Soler-Vila A, Croft AK, Brunton N, 2013. Influence of pressurised liquid extraction and solid-liquid extraction methods on the phenolic content and antioxidant activities of Irish macroalgae. Int. J. Food Sci. Technol. 48:860-9. DOI: https://doi.org/10.1111/ijfs.12038
Truus K, Vaher M, Taure I, 2001. Algal biomass from Fucus vesiculosus (Phaeophyta): investigation of the mineral and alginate components. Proc. Estonian Acad. Sci. Chem. 50:95-103. DOI: https://doi.org/10.3176/chem.2001.2.04
Tuhy Å, Samoraj M, Michalak I, Chojnacka K, 2014. The application of biosorption for production of micronutrient fertilizers based on waste biomass. Appl. Biochem. Biotechnol. 174:1376-92. DOI: https://doi.org/10.1007/s12010-014-1074-0
Tuhy Å, Samoraj M, Witkowska Z, Chojnacka K, 2015. Biofortification of maize with micronutrients by Spirulina. Open Chem. 13:1119-26. DOI: https://doi.org/10.1515/chem-2015-0126
Tyśkiewicz K, Tyśkiewicz R, Konkol M, Rój E, Jaroszuk-Ściseł J, Skalicka-Woźniak K, 2019. Antifungal properties of Fucus vesiculosus L. supercritical fluid extract against Fusarium culmorum and Fusarium oxysporum. Molecules 24:3518. DOI: https://doi.org/10.3390/molecules24193518
Villares R, Fernández-Lema E, López-Mosquera E, 2013. Seasonal variations in concentrations of macro- and micronutrients in three species of brown seaweed. Bot. Mar. 56:49-61. DOI: https://doi.org/10.1515/bot-2012-0114
Weinberger F, Paalme T, Wikström SA, 2020. Seaweed resources of the Baltic Sea, Kattegat and German and Danish North Sea coasts. Bot. Mar. 63:61-72. DOI: https://doi.org/10.1515/bot-2019-0019
Zhang X, Schmidt RE, 1997. The impact of growth regulators on the α-tocopherol status in water-stressed Poa pratensis L. Int. Turfgrass Res. J. 8:1364-73.
Zhao H, Wu L, Chai T, Zhang Y, Tan J, Ma S, 2012. The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana. J. Plant Physiol. 169:1243-52. DOI: https://doi.org/10.1016/j.jplph.2012.04.016
Zodape ST, 2001. Seaweeds as a biofertilizer. J. Sci. Ind. Res. 60:378-82.
Zodape ST, Gupta Abha, Bhandari SC, Rawat US, Chaudhary DR, Eswaran K, Chikara J, 2011. Foliar application of seaweed sap as biostimulant for enhancement of yield and quality of tomato (Lycopersicon esculentum Mill.). J. Sci. Ind. Res. 70:215-9.

How to Cite

Michalak, I., & Baśladyńska, S. (2021). Effect of <em>Fucus extract</em> and biomass enriched with Cu(II) and Zn(II) ions on the growth of garden cress (<em>Lepidium sativum</em>) under laboratory conditions. Italian Journal of Agronomy, 16(2). https://doi.org/10.4081/ija.2021.1799