Salt-affected soils: field-scale strategies for prevention, mitigation, and adaptation to salt accumulation

Submitted: 8 September 2022
Accepted: 31 March 2023
Published: 22 August 2023
Abstract Views: 1996
PDF: 1169
HTML: 81
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Ana Marta Paz Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Oeiras, Portugal.
  • Esperanza Amezketa Tracasa, Sarriguren, Navarra, Spain.
  • Loredana Canfora Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Agricoltura e Ambiente, Roma, Italy.
  • Nadia Castanheira Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Oeiras, Portugal.
  • Gloria Falsone Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Italy.
  • Maria C. Gonçalves Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Oeiras, Portugal.
  • Ian Gould Lincoln Institute for Agri-Food Technology, University of Lincoln, United Kingdom.
  • Biser Hristov University of Forestry, Sofia, Bulgaria.
  • Marcello Mastrorilli marcello.mastrorilli@crea.gov.it Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria; Centro di Ricerca Agricoltura e Ambiente, Bari, Italy.
  • Tiago Ramos Centro de Ciência e Tecnologia do Ambiente e do Mar (MARETECLARSyS), Instituto Superior Técnico, University of Lisbon, Portugal.
  • Rodney Thompson Department of Agronomy, University of Almeria, Spain.
  • Edoardo A.C. Costantini CNR-IBE - Department of Biology, Agriculture and Food Sciences, Sesto Fiorentino (FI), Italy.

The area of salt-affected soils is increasing globally, mainly due to land use and management malpractices, which can threaten soil health and the sustainability of farms. Climate change is likely to increase the prevalence of salt-affected soils in many agricultural areas due to increased aridity and, in coastal areas, due to the increase in sea water level. The causes and processes that develop salt-affected soils are diverse and can result in soil salinity, sodicity, alkalinity, or a combination of these conditions. There is a need to continuously update strategies to tackle salt-affected soils, finding solutions tailored at different scales. This work presents a review of the current knowledge related to salt-affected soils and identifies specific strategies and related case studies for the prevention, mitigation, and adaptation to salt accumulation in soils at the field scale while addressing their limitations, advantages, research needs, and innovation potential. The presented case studies show that adequate irrigation management and drainage can be used as a preventive measure to counter salt accumulation in soils. Phyto and bioremediation can be effective practices for the mitigation of soil sodicity. Leaching and drainage can be effective measures for mitigation of soil salinity. Crop rotation and management of soil organic matter can be used as adaptative measures that improve plant tolerance to salt-affected soils, while a newer approach, microbial management, shows innovation potential as an adaptative measure.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Allred B. J., Daniels J. J., Ehsani M. R., 2008. Handbook of Agricultural Geophysics. CRC Press. https://doi.org/10.1201/9781420019353. DOI: https://doi.org/10.1201/9781420019353
Amezketa E., Aragües R., Carranza R., Urgel B., 2003. Chemical, Spontaneous and Mechanical Dispersion of Clays in Arid-Zone Soils. Spanish Journal of Agricultural Research 1 (4): 95–107. https://doi.org/10.5424/sjar/2003014-51. DOI: https://doi.org/10.5424/sjar/2003014-51
Amezketa E., Aragüés R., Gazol R., 2005. Efficiency of Sulfuric Acid, Mined Gypsum, and Two Gypsum By-Products in Soil Crusting Prevention and Sodic Soil Reclamation. Agronomy Journal 97 (3): 983–89. https://doi.org/10.2134/agronj2004.0236. DOI: https://doi.org/10.2134/agronj2004.0236
Amezketa E., Del Valle de Lersundi J., 2008. Soil Classification and Salinity Mapping for Determining Restoration Potential of Cropped Riparian Areas. Land Degradation & Development 19 (2): 153–64. https://doi.org/10.1002/ldr.820. DOI: https://doi.org/10.1002/ldr.820
Aragüés R.n, Dolores Quilez, and M. Fernandez. 1986. ‘Metodos de Medida de La Salinidad Del Suelo. II- Evaluacion Experimental’. Comunicaciones INIA, January. https://www.researchgate.net/publication/267747881_Metodos_de_medida_de_la_salinidad_del_suelo_II-_Evaluacion_experimental.
Arora S., Singh Y.P., Vanza M., Sahni D., 2016. Bio-Remediation of Saline and Sodic Soils through Halophilic Bacteria to Enhance Agricultural Production. Journal of Soil and Water Conservation, 15 (4): 302. https://doi.org/10.5958/2455-7145.2016.00027.8. DOI: https://doi.org/10.5958/2455-7145.2016.00027.8
Ashrafuzzaman M., Artemi C., Santos F., Schmidt L., 2022. Current and Future Salinity Intrusion in the South-Western Coastal Region of Bangladesh. Spanish Journal of Soil Science, 12. https://doi.org/10.3389/sjss.2022.10017. DOI: https://doi.org/10.3389/sjss.2022.10017
Ayers R.S., Westcot D.W., 1985. Water Quality for Agriculture. Irrigation and Drainage, Paper 29. Rome: FAO. http://www.fao.org/3/T0234E/T0234E00.htm.
Bjorneberg D., Santos F., Castanheira N., Martins O., Reis J., Aase J., Sojka R., 2003. Using Polyacrylamide with Sprinkler Irrigation to Improve Infiltration. Journal of Soil and Water Conservation, September, 283–89.
Bronick C. J., Lal R., 2005. Soil Structure and Management: A Review. Geoderma, 124 (1): 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005. DOI: https://doi.org/10.1016/j.geoderma.2004.03.005
Canfora L., Bacci G., Pinzari F., Lo Papa G., Dazzi C., Benedetti A., 2014. Salinity and Bacterial Diversity: To What Extent Does the Concentration of Salt Affect the Bacterial Community in a Saline Soil?. PLOS ONE, 9 (9): e106662. https://doi.org/10.1371/journal.pone.0106662. DOI: https://doi.org/10.1371/journal.pone.0106662
Castanheira P. J. N., Serralheiro R.P., 2010. Impact of Mole Drains on Salinity of a Vertisol under Irrigation. Biosystems Engineering, 105 (1): 25–33. https://doi.org/10.1016/j.biosystemseng.2009.08.010. DOI: https://doi.org/10.1016/j.biosystemseng.2009.08.010
Chenu C., 1993. Clay- or sand-polysaccharide associations as models for the interface between micro-organisms and soil: water related properties and microstructure. Geoderma, 56, 143-156 DOI: https://doi.org/10.1016/B978-0-444-81490-6.50016-9
Corwin D. L., Scudiero E., 2019. Review of Soil Salinity Assessment for Agriculture across Multiple Scales Using Proximal and/or Remote Sensors. Advances in Agronomy. Academic Press. https://doi.org/10.1016/bs.agron.2019.07.001. DOI: https://doi.org/10.1016/bs.agron.2019.07.001
Corwin D. L., Grattan S. R., 2018. Are Existing Irrigation Salinity Leaching Requirement Guidelines Overly Conservative or Obsolete?. Journal of Irrigation and Drainage Engineering, 144 (8): 02518001. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001319. DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0001319
Costantini E. A. C., Castaldini M., Paz Diago M., Giffard B., Lagomarsino A., Schroers H.J., Priori S., 2018. Effects of Soil Erosion on Agro-Ecosystem Services and Soil Functions: A Multidisciplinary Study in Nineteen Organically Farmed European and Turkish Vineyards’. Journal of Environmental Management, 223 (October): 614–24. https://doi.org/10.1016/j.jenvman.2018.06.065. DOI: https://doi.org/10.1016/j.jenvman.2018.06.065
Cuevas J., Daliakopoulos I.N., del Moral F., Hueso J. J., Tsanis I. K., 2019. A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy, 9 (6): 295. https://doi.org/10.3390/agronomy9060295. DOI: https://doi.org/10.3390/agronomy9060295
Daliakopoulos I. N., Tsanis I. K., Koutroulis A., Kourgialas N. N., Varouchakis A. E., Karatzas G. P., Ritsema C. J., 2016. The Threat of Soil Salinity: A European Scale Review. The Science of the Total Environment, 573 (December): 727–39. https://doi.org/10.1016/j.scitotenv.2016.08.177. DOI: https://doi.org/10.1016/j.scitotenv.2016.08.177
Darouich H. M., Pedras C. M. G., Gonçalves J. M., Pereira L. S., 2014. Drip vs. Surface Irrigation: A Comparison Focussing on Water Saving and Economic Returns Using Multicriteria Analysis Applied to Cotton. Biosystems Engineering, 122 (June): 74–90. https://doi.org/10.1016/j.biosystemseng.2014.03.010. DOI: https://doi.org/10.1016/j.biosystemseng.2014.03.010
De Pascale S., Orsini F., Caputo R., Palermo M. A., Barbieri G., Maggio A., 2012. Seasonal and Multiannual Effects of Salinisation on Tomato Yield and Fruit Quality. Functional Plant Biology, FPB 39 (8): 689–98. https://doi.org/10.1071/FP12152. DOI: https://doi.org/10.1071/FP12152
Dudley L. M., Ben‐Gal A., Lazarovitch N., 2008. Drainage Water Reuse: Biological, Physical, and Technological Considerations for System Management. Journal of Environmental Quality, 37 (S5): S-25-S-35. https://doi.org/10.2134/jeq2007.0314. DOI: https://doi.org/10.2134/jeq2007.0314
FAO, 2021. Global Map of Salt-Affected Soils: GSASmap v1.0. Rome, Italy, FAO. https://www.fao.org/documents/card/en/c/cb7247en.
Farzamian M., Paz M. C., Paz A. M., Castanheira N. L., Gonçalves M. C., Monteiro Santos F.A., Triantafilis J., 2019. Mapping Soil Salinity Using Electromagnetic Conductivity Imaging—A Comparison of Regional and Location-Specific Calibrations. Land Degradation & Development, 30 (12): 1393–1406. https://doi.org/10.1002/ldr.3317. DOI: https://doi.org/10.1002/ldr.3317
Gabriel J. L., Vanclooster M., Quemada M., 2014. Integrating Water, Nitrogen, and Salinity in Sustainable Irrigated Systems: Cover Crops versus Fallow. Journal of Irrigation and Drainage Engineering, 140 (9): A4014002. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000696. DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000696
Galletto L., Barisan L., Boatto V., Costantini E. A. C., Lorenzetti R., Pomarici E., Vecchio R., 2014. More Crop for Drop - Climate Change and Wine: An Economic Evaluation of a New Drought-Resistant Rootstock. Recent Patents on Food, Nutrition & Agriculture, 6 (2): 100–112. https://doi.org/10.2174/2212798407666150131140611. DOI: https://doi.org/10.2174/2212798407666150131140611
Gonçalves M. C., Šimůnek J., Ramos T. B., Martins J. C., Neves M. J., Pires F. P., 2006. Multicomponent Solute Transport in Soil Lysimeters Irrigated with Waters of Different Quality. Water Resources Research, 42 (8). https://doi.org/10.1029/2005WR004802. DOI: https://doi.org/10.1029/2005WR004802
Gould I. J., Wright I., Collison M., Ruto E., Bosworth G., Pearson S., 2020. The Impact of Coastal Flooding on Agriculture: A Case-Study of Lincolnshire, United Kingdom. Land Degradation & Development, 31 (12): 1545–59. https://doi.org/10.1002/ldr.3551. DOI: https://doi.org/10.1002/ldr.3551
Gould I., De Waegemaeker J., Tzemi D., Wright I., Pearson S., Ruto E., Karrasch L., 2021. Salinization Threats to Agriculture across the North Sea Region. In: Future of Sustainable Agriculture in Saline Environments. CRC Press. DOI: https://doi.org/10.1201/9781003112327-5
Herrero J., Castañeda C., 2018. A Paddy on Sodic Varved Sediment and Plant Life Constraints, NE Spain. CATENA, 164 (May): 50–61. https://doi.org/10.1016/j.catena.2018.01.010. DOI: https://doi.org/10.1016/j.catena.2018.01.010
Isidoro D., Aragüés R., 2007. River Water Quality and Irrigated Agriculture in the Ebro Basin: An Overview. International Journal of Water Resources Development, 23 (1): 91–106. https://doi.org/10.1080/07900620601159743. DOI: https://doi.org/10.1080/07900620601159743
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria
Ivushkin K., Harm B., Bregt A. K., Pulatov A., Kempen B., de Sousa L., 2019. Global Mapping of Soil Salinity Change. Remote Sensing of Environment, 231 (September): 111260. https://doi.org/10.1016/j.rse.2019.111260. DOI: https://doi.org/10.1016/j.rse.2019.111260
de Paz J., Thompson R., 2018. EC Measurement in Soil by Conventional Methods. In: The Fertigation Bible. https://www.fertinnowa.com/download/the-fertigation-bible/.
Katerji N., van Hoorn J. W., Hamdy A., Mastrorilli M., 2003. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric. Water Manage., 62, 37-66 DOI: https://doi.org/10.1016/S0378-3774(03)00005-2
Katerji N., Mastrorilli M., van Hoorn J.W., Lahmer F.Z., Hamdy A., Oweis T., 2009. Durum wheat and barley productivity in saline–drought environments. Europ. J. Agronomy 31, 1–9 DOI: https://doi.org/10.1016/j.eja.2009.01.003
Katerji N., Mastrorilli M., Lahmer F.Z., Maaloufd F., Oweis T., 2011. Faba bean productivity in saline–drought conditions, Europ. J. Agronomy, 35, 1, 2-12. DOI: https://doi.org/10.1016/j.eja.2011.03.001
Kayasth M., Kumar V., Gerand R., 2014. Gordonia Sp.: A Salt Tolerant Bacterial Inoculant for Growth Promotion of Pearl Millet under Saline Soil Conditions. 3 Biotech, 4 (5): 553–57. https://doi.org/10.1007/s13205-013-0178-5. DOI: https://doi.org/10.1007/s13205-013-0178-5
Khan M. I. R., Syeed S., Nazar R., Anjum N. A., 2012. An Insight into the Role of Salicylic Acid and Jasmonic Acid in Salt Stress Tolerance. In: Phytohormones and Abiotic Stress Tolerance in Plants, edited by Nafees A. Khan, Rahat Nazar, Noushina Iqbal, and Naser A. Anjum, 277–300. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-25829-9_12. DOI: https://doi.org/10.1007/978-3-642-25829-9_12
Koganti T., Narjary B., Zare E., Latif Pathan A., Huang J., Triantafilisnd J., 2018. Quantitative Mapping of Soil Salinity Using the DUALEM-21S Instrument and EM Inversion Software. Land Degradation & Development, 29 (6): 1768–81. https://doi.org/10.1002/ldr.2973. DOI: https://doi.org/10.1002/ldr.2973
Kováčik J., Grúz J., Bačkor M., Strnad M., Repčák M., 2008. Salicylic Acid-Induced Changes to Growth and Phenolic Metabolism in Matricaria Chamomilla Plants. Plant Cell Reports, 28 (1): 135. https://doi.org/10.1007/s00299-008-0627-5. DOI: https://doi.org/10.1007/s00299-008-0627-5
Liu Y., Ao C., Zeng W., Kumar Srivastava A., Gaiser T., Wu J., Huang J., 2021. Simulating Water and Salt Transport in Subsurface Pipe Drainage Systems with HYDRUS-2D. Journal of Hydrology, 592 (January): 125823. https://doi.org/10.1016/j.jhydrol.2020.125823. DOI: https://doi.org/10.1016/j.jhydrol.2020.125823
Mainuddin M., Kirby J. M., 2021. Impact of Flood Inundation and Water Management on Water and Salt Balance of the Polders and Islands in the Ganges Delta. Ocean & Coastal Management, 210 (September): 105740. https://doi.org/10.1016/j.ocecoaman.2021.105740. DOI: https://doi.org/10.1016/j.ocecoaman.2021.105740
Manfredini A., Malusà E., Costa C., Pallottino F., Mocali S., Pinzari F., Canfora L., 2021. Current Methods, Common Practices, and Perspectives in Tracking and Monitoring Bioinoculants in Soil. Frontiers in Microbiology, 12. https://www.frontiersin.org/articles/10.3389/fmicb.2021.698491. DOI: https://doi.org/10.3389/fmicb.2021.698491
Miao Q., Shi H., Gonçalves J. M., S. Pereira L., 2015. Field Assessment of Basin Irrigation Performance and Water Saving in Hetao, Yellow River Basin: Issues to Support Irrigation Systems Modernisation. Biosystems Engineering, 136 (August): 102–16. https://doi.org/10.1016/j.biosystemseng.2015.05.010. DOI: https://doi.org/10.1016/j.biosystemseng.2015.05.010
Minhas P. S., Ramos T. B., Ben-Gal A., Pereira L. S., 2020. Coping with Salinity in Irrigated Agriculture: Crop Evapotranspiration and Water Management Issues. Agricultural Water Management, 227 (January): 105832. https://doi.org/10.1016/j.agwat.2019.105832. DOI: https://doi.org/10.1016/j.agwat.2019.105832
Nazar R., Umar S., Khan N. A., 2015. Exogenous Salicylic Acid Improves Photosynthesis and Growth through Increase in Ascorbate-Glutathione Metabolism and S Assimilation in Mustard under Salt Stress. Plant Signaling & Behavior, 10 (3): e1003751. https://doi.org/10.1080/15592324.2014.1003751. DOI: https://doi.org/10.1080/15592324.2014.1003751
Northcote K. H., Skene J. K. M., 1972. Australian Soils with Saline and Sodic Properties. Australia Commonwealth Sci Indus Res Organ Soil Publ. https://scholar.google.com/scholar_lookup?title=Australian+soils+with+saline+and+sodic+properties&author=Northcote%2C+K.H.&publication_year=1972.
Omuto, C. T., R. R. Vargas, A. M. El Mobarak, N. Mohamed, K. Viatkin, and Y. Yigini. 2020. Mapping of Salt-Affected Soils – Technical Manual. Rome, Italy, FAO. https://doi.org/10.4060/ca9215en. DOI: https://doi.org/10.4060/ca9215en
Otlewska A., Migliore M., Dybka-Stępień K., Manfredini A., Struszczyk-Świta K., Napoli R., Białkowska A., Canfora L., Pinzari F., 2020. When Salt Meddles Between Plant, Soil, and Microorganisms. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.553087. DOI: https://doi.org/10.3389/fpls.2020.553087
Oude E., van Baaren G. H. P., E. S., de Louw P. G. B., 2010. Effects of Climate Change on Coastal Groundwater Systems: A Modeling Study in the Netherlands. Water Resources Research, 46 (10). https://doi.org/10.1029/2009WR008719. DOI: https://doi.org/10.1029/2009WR008719
Paz A. M., Castanheira N., Farzamian M., Paz M. C., Gonçalves M. C., Monteiro Santos F. A., Triantafilis J., 2020. Prediction of Soil Salinity and Sodicity Using Electromagnetic Conductivity Imaging. Geoderma, 361 (March): 114086. https://doi.org/10.1016/j.geoderma.2019.114086. DOI: https://doi.org/10.1016/j.geoderma.2019.114086
Pereira, L. S., Duarte E., Fragoso R., 2014. Water Use: Recycling and Desalination for Agriculture. In: Encyclopedia of Agriculture and Food Systems, edited by Neal K. Van Alfen, 407–24. Oxford: Academic Press. https://doi.org/10.1016/B978-0-444-52512-3.00084-X. DOI: https://doi.org/10.1016/B978-0-444-52512-3.00084-X
Qadir M., Oster J. D., Schubert S., Noble A. D., Sahrawat K. L., 2007. Phytoremediation of Sodic and Saline‐Sodic Soils. In: Advances in Agronomy, 96:197–247. Advances in Agronomy. Academic Press. https://doi.org/10.1016/S0065-2113(07)96006-X. DOI: https://doi.org/10.1016/S0065-2113(07)96006-X
Qadir M., Sposito G., Smith C. J., Oster J. D., 2021. Reassessing Irrigation Water Quality Guidelines for Sodicity Hazard. Agricultural Water Management, 255 (September): 107054. https://doi.org/10.1016/j.agwat.2021.107054. DOI: https://doi.org/10.1016/j.agwat.2021.107054
Ramos T. B., Castanheira N. L., Gonçalves M. C., Fernandes M. L., Januário M. I., Lourenço M. E., Pires F. P., Martins J. C., 2012. Effect of Combined Use of Brackish Water and Nitrogen Fertilizer on Biomass and Sugar Yield of Sweet Sorghum. Pedosphere, 22 (6): 785–94. https://doi.org/10.1016/S1002-0160(12)60064-2. DOI: https://doi.org/10.1016/S1002-0160(12)60064-2
Ramos T. B., Gonçalves M. C., Castanheira N. L., Martins J. C., Santos F. L., Prazeres A., Fernandes M. L., 2009. Effect of Sodium and Nitrogen on Yield Function of Irrigated Maize in Southern Portugal. Agricultural Water Management, 96 (4): 585–94. https://doi.org/10.1016/j.agwat.2008.09.023. DOI: https://doi.org/10.1016/j.agwat.2008.09.023
Ramos T., Šimůnek J., Gonçalves M. C., Martins J. C., Prazeres A., Castanheira N. L., Pereira L. S., 2011. Field Evaluation of a Multicomponent Solute Transport Model in Soils Irrigated with Saline Waters. Journal of Hydrology, 407 (1): 129–44. https://doi.org/10.1016/j.jhydrol.2011.07.016. DOI: https://doi.org/10.1016/j.jhydrol.2011.07.016
Rengasamy P., Marchuk A., 2011. Cation Ratio of Soil Structural Stability (CROSS). Soil Research, 49 (3): 280–85. https://doi.org/10.1071/SR10105. DOI: https://doi.org/10.1071/SR10105
Rhoades J. D., 1999. Soil Salinity Assessment: Methods and Interpretation of Electrical Conductivity Measurements. FAO Irrigation and Drainage, Paper 0254. Rome, Italy, FAO. https://www.fao.org/publications/card/en/c/3840b5a4-2720-549c-ba34-6918b9e5a954/.
Richards L. A., ed., 1954. Diagnosis and Improvement of Saline and Alkali Soils. Agricultural Handbook 60. USDA. https://journals.lww.com/soilsci/citation/1954/08000/diagnosis_and_improvement_of_saline_and_alkali.12.aspx.
Saghafi D., Delangiz N., Asgari Lajayer B., Ghorbanpour Manour., 2019. An Overview on Improvement of Crop Productivity in Saline Soils by Halotolerant and Halophilic PGPRs’. 3 Biotech, 9 (7): 261. https://doi.org/10.1007/s13205-019-1799-0. DOI: https://doi.org/10.1007/s13205-019-1799-0
Santos F. L., Serralheiro R. P., 2000. Improving Infiltration of Irrigated Mediterranean Soils with Polyacrylamide. Journal of Agricultural Engineering Research, 76 (1): 83–90. https://doi.org/10.1006/jaer.2000.0534. DOI: https://doi.org/10.1006/jaer.2000.0534
Seo B. S., Jeong Y. J., Baek N. R., Park H. J., Yang H. I., Park S. I., Choi W. J., 2022. Soil Texture Affects the Conversion Factor of Electrical Conductivity from 1:5 Soil-Water to Saturated Paste Extracts. Pedosphere, June. https://doi.org/10.1016/j.pedsph.2022.06.023. DOI: https://doi.org/10.1016/j.pedsph.2022.06.023
Shrivastava P., Kumar R., 2015. Soil Salinity: A Serious Environmental Issue and Plant Growth Promoting Bacteria as One of the Tools for Its Alleviation. Saudi Journal of Biological Sciences, 22 (2): 123–31. https://doi.org/10.1016/j.sjbs.2014.12.001. DOI: https://doi.org/10.1016/j.sjbs.2014.12.001
Simunek J., Sejna M., van Genuchten M. Th., 2018. Hydrus 1D’. Czech Republic: PC-Progress.
Smith C. J., Oster J. D., Sposito G., 2015. Potassium and Magnesium in Irrigation Water Quality Assessment. Agricultural Water Management, The Jim Oster Special Issue, 157 (July): 59–64. https://doi.org/10.1016/j.agwat.2014.09.003. DOI: https://doi.org/10.1016/j.agwat.2014.09.003
Sonmez S., Buyuktas D., Okturen F., Citak S., 2008. Assessment of Different Soil to Water Ratios (1:1, 1:2.5, 1:5) in Soil Salinity Studies. Geoderma, Antarctic Soils and Soil Forming Processes in a Changing Environment, 144 (1): 361–69. https://doi.org/10.1016/j.geoderma.2007.12.005. DOI: https://doi.org/10.1016/j.geoderma.2007.12.005
Sparks D. L., 2003. The Chemistry of Saline and Sodic Soils. In: Environmental Soil Chemistry (Second Edition), edited by Donald L. Sparks, 285–300. Burlington: Academic Press. https://doi.org/10.1016/B978-012656446-4/50010-4. DOI: https://doi.org/10.1016/B978-012656446-4/50010-4
Stolte J., Tesfai M., Kværnø S., Keizer J., Verheijen F., Panagos P., Ballabio C., Hessel R., 2015. Soil Threats in Europe: Status, Methods, Drivers and Effects on Ecosystem Services. JRC Technical Report. European Union. https://esdac.jrc.ec.europa.eu/content/soil-threats-europe-status-methods-drivers-and-effects-ecosystem-services.
Stolte J., Tesfai M., Øygarden L., Kværnø S., Keizer J., Verheijen F., Panagos P., Ballabio C., Hessel R. eds., 2015. Soil Threats in Europe. EUR276007 EN. LU: Publications Office of the European Union. https://data.europa.eu/doi/10.2788/828742.
Szabolcs I., 1989. Salt-Affected Soils. Boca Raton, Fla., CRC Press.
Tanji K., Kielen N., 2002. Agricultural Drainage Water Management in Arid and Semi-Arid Areas. https://www.semanticscholar.org/paper/Agricultural-Drainage-Water-Management-in-Arid-and-Tanji-Kielen/ad6648807fa88fa33a839eca78c637128590d3d9.
Tedeschi A., 2020. Irrigated Agriculture on Saline Soils: A Perspective. Agronomy, 10 (11): 1630. https://doi.org/10.3390/agronomy10111630. DOI: https://doi.org/10.3390/agronomy10111630
Trnka Mi., Kersebaum K. C., Eitzinger J., Hayes M., Hlavinka P., Svoboda M., Dubrovský M., 2013. Consequences of Climate Change for the Soil Climate in Central Europe and the Central Plains of the United States. Climatic Change, 120 (1): 405–18. https://doi.org/10.1007/s10584-013-0786-4. DOI: https://doi.org/10.1007/s10584-013-0786-4
Urdanoz V., Amezketa E., Laborda I., Ochoa V., Aragüés R., 2008. Mobile and Georeferenced Electromagnetic Sensors and Applications for Salinity Assessment. Spanish Journal of Agricultural Research, ISSN 1695-971X, No. 3, 2008, Pags. 469-478 6 (September). https://doi.org/10.5424/sjar/2008063-339. DOI: https://doi.org/10.5424/sjar/2008063-339
Vassileva M., Malusà E., Sas-Paszt L., Trzcinski P., Galvez A., Flor-Peregrin E., Shilev S., Canfora L., Mocali S., Vassilev N., 2021. Fermentation Strategies to Improve Soil Bio-Inoculant Production and Quality. Microorganisms, 9 (6): 1254. https://doi.org/10.3390/microorganisms9061254. DOI: https://doi.org/10.3390/microorganisms9061254
Veerman C., Pinto Correia T., Bastioli C., Biro B., Bouma J., Cienciala E., Emmett B., 2020. Caring for Soil Is Caring for Life: Report of the Mission Board for Soil Health and Food. LU: Publications Office of the European Union. https://data.europa.eu/doi/10.2777/821504.
Visconti F., de Paz and J. M., 2016. Electrical Conductivity Measurements in Agriculture: The Assessment of Soil Salinity. New Trends and Developments in Metrology. IntechOpen. https://doi.org/10.5772/62741. DOI: https://doi.org/10.5772/62741
Vittori Antisari L., Speranza M., Ferronato C., De Feudis M., Vianello G., Falsone G., 2020. Assessment of Water Quality and Soil Salinity in the Agricultural Coastal Plain (Ravenna, North Italy). Minerals, 10 (4): 369. https://doi.org/10.3390/min10040369. DOI: https://doi.org/10.3390/min10040369
Vousdoukas M. I., Mentaschi L., Hinkel J., Ward P. J., Mongelli I., Ciscar J. C., Feyen L., 2020. Economic Motivation for Raising Coastal Flood Defenses in Europe. Nature Communications, 11 (1): 2119. https://doi.org/10.1038/s41467-020-15665-3. DOI: https://doi.org/10.1038/s41467-020-15665-3
Weil R., Bradley N., 2017. The Nature and Properties of Soils. 15th ed. Pearson. /content/one-dot-com/one-dot-com/us/en/higher-education/program.html.
Zhu Yi., Ali A., Dang A., Wandel A. P., McLean Bennett J., 2019. Re-Examining the Flocculating Power of Sodium, Potassium, Magnesium and Calcium for a Broad Range of Soils. Geoderma, 352 (October): 422–28. https://doi.org/10.1016/j.geoderma.2019.05.041. DOI: https://doi.org/10.1016/j.geoderma.2019.05.041

Edited by

review

Supporting Agencies

EIP-AGRI Focus Group “Soil Salinisation”, “Water4AgriFood” (Progetto ARS01_00825)

How to Cite

Paz, A. M., Amezketa, E., Canfora, L., Castanheira, N., Falsone, G., Gonçalves, M. C., Gould, I., Hristov, B., Mastrorilli, M., Ramos, T., Thompson, R., & Costantini, E. A. (2023). Salt-affected soils: field-scale strategies for prevention, mitigation, and adaptation to salt accumulation. Italian Journal of Agronomy, 18(2). https://doi.org/10.4081/ija.2023.2166