Efficiency of index-based selection for potential yield in durum wheat [Triticum turgidum (L.) ssp. turgidum convar. durum (Desf.) Mackey] lines

Published: 6 April 2023
Abstract Views: 1041
PDF: 621
HTML: 190
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Abderrahmane Hannachi abderhannachi@yahoo.fr National Agronomic Research Institute of Algeria (INRAA), Agrosystem East Division, Setif, Algeria.
  • Zine El Abidine Fellahi Department of Agronomy, Faculty of Natural, Life and Earth Sciences and the Universe, University of Mohamed El Bachir El Ibrahimi, Bordj Bou Arreridj; Valorization of Natural Biological Resources Laboratory, University of Ferhat Abbas Setif-1, Setif, Algeria.

Wheat is a socioeconomically important crop in Algeria. Improving genetic gain of quantitative traits through selection is at the core of every successful breeding program. Selection is usually performed on grain yield, but other agronomically related characteristics can also help increase genetic gain through indirect or multi-trait selection. The objective of this work was to quantify genetic parameters and compare the efficiency of direct, indirect and simultaneous selection methods in terms of predicted genetic values of wheat progenies. For this purpose, 418 F4-derived lines were evaluated for six agronomic traits including heading date, flag leaf area, plant height, number of spikes, thousand kernel weight and grain yield in an augmented block design with three check varieties. Wide genetic variation with moderately high broad-sense heritability were observed for the recorded traits, except for heading date. The results from genetic gain revealed variation in gains for assessed traits and breeding methods employed. The classic index of Smith and Hazel (SHI) demonstrated a similar genetic gain in grain yield compared to gain from direct selection. Generally, the selection-based index showed the highest responses considering all traits simultaneously with a slight inferiority of the SHI index. The coincidence rates among the evaluated indices were higher than those obtained between the measured traits. Based on the comparisons between the selected lines, the SHI index and the selection base index of Williams were similar to grain yield and can reach up to 79.51% coincidence of breeding lines identified by these selection criteria. Breeding lines L252, L34, L24, L130 and L413 were the most common individuals identified according to number of coincidences from the different selection methods used. Of these, L34 and L24, and to a lesser extent L15 can be considered promising wheat lines for improving grain yield.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Acquaah G, 2012. Principles of plant genetics and breeding. Hoboken, NJ: John Wiley & Sons, Ltd. DOI: https://doi.org/10.1002/9781118313718
Benbelkacem A, 2022. Principes d’amélioration des plantes: stratégies de sélection variétale des céréales en Algérie. Journées scientifiques sur la Connaissance et le Savoir, 16-17 Mai 2022, Faculté SNV- STU and LCVRN, Université Mohamed El Bachir El Ibrahimi - Bordj Bou Arreridj, Algeria.
Beres BL, Rahmani E, Clarke JM, Grassini P, Pozniak CJ, Geddes CM, Porker KD, May WE, Ransom JK, 2020. a systematic review of durum wheat: enhancing production systems by exploring genotype, environment, and management (G × E × M) synergies. Front. Plant Sci. 11:568657. DOI: https://doi.org/10.3389/fpls.2020.568657
Bernardo R, 2002. Breeding for quantitative traits in plants. Woodbury, MN: Stemma Press.
Candido WDS, Silva CM, Costa ML, Silva BEDA, Miranda BLD, Pinto JFN, Reis EFD, 2020. Selection indexes in the simultaneous increment of yield components in topcross hybrids of green maize. PAB. 55:e01206. DOI: https://doi.org/10.1590/s1678-3921.pab2020.v55.01206
Cargnin A, de Souza MA, Machado CG, Pimentel AJB, 2007. Genetic gain prediction for wheat with different selection criteria. CBAB. 7:334-9. DOI: https://doi.org/10.12702/1984-7033.v07n04a01
Carvalho ADF, Pereira GE, Silva GO, 2022. Estimates of genetic gains in the carrot using different selection indices [Article in Portuguese]. Revista Agro@mbiente On-line 16:1-14. DOI: https://doi.org/10.18227/1982-8470ragro.v16i0.7154
Chabane M, Boussard JM, 2012. La production céréalière en Algérie: des réalités d’aujourd’hui aux perspectives stratégiques de demain. hal-02804678. Available from: https://hal.inrae.fr/hal-02804678/document.
Chennafi H, Aïdaoui A, Bouzerzour H, Saci A, 2006. Yield response of durum wheat (Triticum durum Desf.) cultivar Waha to deficit irrigation under semi arid growth conditions. Asian J. Plant Sci. 5:854-60. DOI: https://doi.org/10.3923/ajps.2006.854.860
Costa MM, Di Mauro AO, Unêda-Trevisoli SH, Arriel NHC, Bárbaro IM, Da Silveira GD, Muniz FRS, 2008. Analysis of direct and indirect selection and indices in soybean segregating populations. CBAB. 8:47-55. DOI: https://doi.org/10.12702/1984-7033.v08n01a07
Cruz CD, 2006. Programa GENES: Biometria. 1st ed. Viçosa: Editora UFV.
Cruz CD, 2014. Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Sci. Agron, 35:271-6.
Cruz CD, Regazzi AJ, Carneiro PCS, 2012. Modelos biométricos aplicados ao melhoramento genético. Volume 1. Viçosa: Editora UFV.
de Santiago S, de Souza Junior CL, Lemos LB, Môro GV, 2019. Prediction of genetic gain using selection indices in maize lines. Afr. J. Agric. Res. 14:787-93.
Elston RCA, 1963. A weight-free index for the purpose of ranking or selection with respect to several traits at a time. Biometrics 19:85-97. DOI: https://doi.org/10.2307/2527573
Falconer DS, Mackay TFC, 1996. Introduction to quantitative genetics. 4th ed. New York: Longman.
Federer WT, 1955. Experimental design: theory and application. New York and London: Macmillan Co.
Fellahi Z, Hannachi A, Bouzerzour H, 2018. Analysis of direct and indirect selection and indices in bread wheat (Triticum aestivum L.) segregating progeny. Int. J. Agron. 2018:1-11. DOI: https://doi.org/10.1155/2018/8312857
Fellahi Z, Hannachi A, Bouzerzour H, 2020. Expected genetic gains from mono trait and indices based selection in advanced bread wheat (Triticum aestivum L.) populations. Rev. Fac. Nac. Agron. Medellín 73:9131-41. DOI: https://doi.org/10.15446/rfnam.v73n2.77806
Guimarães PHR, Melo PGS, Cordeiro ACC, Torga PP, Rangel PHN, Castro AP, 2021. Index selection can improve the selection efficiency in a rice recurrent selection population. Euphytica 217:95. DOI: https://doi.org/10.1007/s10681-021-02819-7
Haddad L, Bachir A, Ykhelef N, Benmahammed A, Bouzerzour H, 2021. Durum wheat (Triticum turgidum ssp durum) improvement during the past 67-year in Algeria: performance assessment of a set of local varieties under rainfed conditions of the eastern high plateaus. JJBS. 14:327-36. DOI: https://doi.org/10.54319/jjbs/140219
Haddad L, Bouzerzour H, Benmahammed A, Zerargui H, Hannachi A, Bachir A, Salmi M, Fellahi Z, Nouar H, Laala Z, 2016. Analysis of genotype × environment interaction for grain yield in early and late sowing date on Durum Wheat (Triticum durum Desf.) genotypes. JJBS. 9:139-46.
Hamawaki OT, de Sousa LB, Romanato FN, Nogueira APO, Júnior CDS, Polizel AC, 2012. Genetic parameters and variability in soybean genotypes. Comun. Sci. 3:76-83.
Hamblin J, Zimmermann MJ, 1986. Breeding common bean for yield in mixtures. Plant Breed. Rev. 4:245-72. DOI: https://doi.org/10.1002/9781118061015.ch8
Hannachi A, Fellahi Z, Bouzerzour H, Boutekrabt A, 2013. Diallel-cross analysis of grain yield and stress tolerance-related traits under semi-arid conditions in Durum wheat (Triticum durum Desf.). Electron. J. Plant Breed. 4:1027-33.
Hazel LN, 1943. The genetic basis for constructing selection indexes. Genetics 28:476-90. DOI: https://doi.org/10.1093/genetics/28.6.476
Kourat T, Smadhi D, Madani A, 2022. Modeling the impact of future climate change impacts on rainfed durum wheat production in Algeria. Climate 10:50. DOI: https://doi.org/10.3390/cli10040050
Laala Z, Oulmi A, Fellahi Z, Benmahammed A, 2021. Studies on the nature of relationships between grain yield and yield-related traits in durum wheat (Triticum durum Desf.) populations. Rev. Fac. Nac. Agron. Medellín 74:9631-42. DOI: https://doi.org/10.15446/rfnam.v74n3.92488
Lamara A, Fellahi Z, Hannachi A, Benniou R, 2022. Assessing the phenotypic variation, heritability and genetic advance in bread wheat (Triticum aestivum L.) candidate lines grown under rainfed semi-arid region of Algeria. Rev. Fac. Nac. Agron. Medellín 75:10107-18. DOI: https://doi.org/10.15446/rfnam.v75n3.100638
MADRP-DSASI, 2020. Data of the Ministry of agriculture and rural development and fisheries, directorate of agricultural statistics and information systems, Algiers, Algeria.
Mahdy RE, Althagafi Z, Al-Zahrani RM, Aloufi HH, Alsalmi RA, Abeed AH, Mahdy EE, Tammam SA, 2022. Comparison of desired-genetic-gain selection indices in late generations as an insight on superior-family formation in bread wheat (Triticum aestivum L.). Agronomy 12:1738. DOI: https://doi.org/10.3390/agronomy12081738
Martínez-Moreno F, Ammar K, Solís I, 2022. Global changes in cultivated area and breeding activities of durum wheat from 1800 to date: a historical review. Agronomy 12:1135. DOI: https://doi.org/10.3390/agronomy12051135
Mekaoussi R, Rabti AB, Fellahi Z, Hannachi A, Benmahammed A, Bouzerzour H, 2021. Assessment of durum wheat (Triticum durum Desf.) genotypes based on their agro-physiological characteristics and stress tolerance indices. Acta Agric. Slov. 117:1-16. DOI: https://doi.org/10.14720/aas.2021.117.2.2021
Mulamba NN, Mock JJ, 1978. Improvement of yield potential of the ETO blanco maize (Zea mays L.) population by breeding for plant traits [Mexico]. EJGC. 7:40-51.
Pedrozo CÂ, Benites FRG, Barbosa MHP, de Resende MDV, da Silva FL, 2009. Efficiency of selection indexes using the REML/BLUP procedure in sugarcane breeding. Sci. Agrar. 10:31-6. DOI: https://doi.org/10.5380/rsa.v10i1.11711
Peixoto JVM, Maciel GM, Finzi RR, Pereira LM, Siquieroli ACS, Silva MF, Clemente AA, 2021. Genetic parameters and selection indexes for biofortified red leaf lettuce. PAB. 56:e02431. DOI: https://doi.org/10.1590/s1678-3921.pab2021.v56.02431
Pesek J, Baker RJ, 1971. Comparison of predicted and observed responses to selection for yield in wheat. Can. J. Plant Sci. 51:187-92. DOI: https://doi.org/10.4141/cjps71-038
Rabti AB, Mekaoussi R, Fellahi Z, Hannachi A, Benbelkacem A, Benmahammed A, Bouzerzour H, 2020. Characterization of old and recent durum wheat [Triticum turgidum (L.) Tell. convar. durum (Desf.) Mackey] varieties assessed under South Mediterranean conditions. Egypt. J. Agron. 42:307-20.
Ramalho MAP, Abreu AFB, Santos JB, Nunes JAR, 2012. Aplicações da genética quantitativa no melhoramento de plantas autógamas. Lavras: UFLA.
Ramos JP, Cavalcanti JJ, Freire RM, da Silva CR, da Silva MDF, Santos RCD, 2022. Selection indexes and economic weights applied to runner-peanut breeding. Rev. Bras. Eng. Agrícola Ambient. 26:327-34. DOI: https://doi.org/10.1590/1807-1929/agriambi.v26n5p327-334
Richards RA, Rebetzke GJ, Condon AG, Van Herwaarden A, 2002. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci 42:111-21. DOI: https://doi.org/10.2135/cropsci2002.1110
Silva IG, Castoldi R, de Oliveira Charlo HC, de Souza Miranda M, Nunes TDC, Costa LL, Lemes EM, 2020a. Prediction of genetic gain in sweet corn using selection indexes. J. Crop Sci. Biotechnol. 23:191-6. DOI: https://doi.org/10.1007/s12892-019-0334-0
Silva MF, Maciel GM, Finzi RR, Peixoto JVM, Rezende WS, Castoldi R, 2020b. Selection indexes for agronomic and chemical traits in segregating sweet corn populations. Hort. Bras. 38:71-7. DOI: https://doi.org/10.1590/s0102-053620200111
Smiderle ÉC, Furtini IV, da Silva CS, Botelho FB, Resende MP, Botelho RT, Filho JMC, de Castro AP, Utumi MM, 2019. Index selection for multiple traits in upland rice progenies. Rev. Ciênc. Agrár. 42:4-10.
Smith HFA, 1936. A discriminant function for plant selection. Ann. Eugenic. 7:240-50. DOI: https://doi.org/10.1111/j.1469-1809.1936.tb02143.x
Spagnoletti Zeuli PL, Qualset CO, 1990. Flag leaf variation and the analysis of diversity in durum wheat. Plant Breed. 105:189-202. DOI: https://doi.org/10.1111/j.1439-0523.1990.tb01196.x
Steel RGD, Torrie JH, 1982. Principles and procedures of statistics. New York, NY: McGraw-Hill Books.
Subandi W, Compton A, Empig LT, 1973. Comparison of the efficiencies of selection indices for three traits in two variety crosses of corn. Crop Sci. 13:184-86. DOI: https://doi.org/10.2135/cropsci1973.0011183X001300020011x
Williams JS, 1962. The evaluation of a selection index. Biometrics 18:375-93. DOI: https://doi.org/10.2307/2527479

How to Cite

Hannachi, A., & Fellahi, Z. E. A. (2023). Efficiency of index-based selection for potential yield in durum wheat [<em>Triticum turgidum</em> (L.) ssp. <em>turgidum convar. durum</em> (Desf.) Mackey] lines. Italian Journal of Agronomy, 18(1). https://doi.org/10.4081/ija.2023.2182