Assessment of yield and nitrate content of wild rocket grown under salinity and subjected to biostimulant application

Published: 22 August 2023
Abstract Views: 587
PDF: 353
HTML: 30
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Maria Isabella Sifola Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
  • Ida Di Mola ida.dimola@unina.it Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
  • Lucia Ottaiano Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
  • Eugenio Cozzolino Council for Agricultural Research and Economics (CREA) – Research Center for Cereal and Industrial Crops, Caserta, Italy.
  • Christophe El-Nakhel Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
  • Youssef Rouphael Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
  • Mauro Mori Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.

Soil secondary salinity due to irrigation is a condition that frequently occurs in Mediterranean areas, and negatively affects crop growth and yield. Biostimulants are proven to alleviate the detrimental effect of salinity on plant growth and production. Four increasing saline concentration levels of water irrigation reaching 6.0 dS m-1 (Electrical Conductivity - EC) were combined with foliar biostimulant treatments (tropical plants and a protein hydrolysate) in pots containing wild rocket. The combined effect of experimental factors improved the SPAD index with greater increases in the EC4 and EC6 plants (+9 and +12% compared to untreated, respectively) but also caused an increase in nitrate content (+48%, on average, compared to the untreated control) without exceeding the EC legal threshold. Overall, for the other parameters analyzed, the response of wild rocket both to application of both salinity and biostimulant was consistent with previous studies. Our results show that biostimulant effectiveness in alleviating the detrimental effect of salinity was not evident for all parameters analyzed. In addition, harvest time affected most parameters, showing the important role of growing conditions in modulating plant response to salinity stress when biostimulants are applied. Plant response thus seems to depend on biostimulant application (type, dose, timing), growing conditions, and genetic traits.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Abou-Sreea AIB, Azzam CR, Al-Taweel SK, Abdel-Aziz RM, Belal HEE, Rady MM, Abdel-Kader AAS, Majrashi A, Khaled KAM, 2021. Natural Biostimulant Attenuates Salinity Stress Effects in Chili Pepper by Remodeling Antioxidant, Ion, and Phytohormone Balances, and Augments Gene Expression. Plants 10:2316. DOI: https://doi.org/10.3390/plants10112316
Arif MR, Islam MT, Robin AHK, 2019. Salinity stress alters root morphology and root hair traits in Brassica napus. Plants 8:192. DOI: https://doi.org/10.3390/plants8070192
Barillari RN, Canistro D, Paolini M, Ferroni F, Pendullini GF, Iori R, Valmigli L, 2005. Direct antioxydant activity of purified glucoerucin the dietary secondary metabolite, contained in rocket (Eruca sativa Mill.) seeds and sprouts. J. Agric. Food Chem. 53:2475-82. DOI: https://doi.org/10.1021/jf047945a
Bernstein N, Kafkafi U, 2002. Root Growth Salinity stress. In: Waisel Y, Eshel A, Kafkafi U. Eds., Plant Roots “The Hidden Half”, 3rd edition, The Hebrew University of Jerusalem Rehovot and Tel Aviv University, Israel, 787-805. DOI: https://doi.org/10.1201/9780203909423.ch44
Bonasia A, Lazzizera C, Elia A, Conversa G, 2017. Nutritional, biophysical and physiological characteristics of wild rocket genotypes as affected by soilless cultivation system, salinity level of nutrient solution and growing period. Front. Plant Sci. 8:1-15. DOI: https://doi.org/10.3389/fpls.2017.00300
Bulgari R, Franzoni, G, Ferrante, A. 2019. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agron. 9:306. DOI: https://doi.org/10.3390/agronomy9060306
Campobenedetto C, Mannino G, Beekwilder J, Contartese V, Karlova R, Bertea CM. 2011. The Application of a Biostimulant Based on Tannins Affects Root Architecture and Improves Tolerance to Salinity in Tomato Plants. Sci. Rep. 11:354. DOI: https://doi.org/10.1038/s41598-020-79770-5
Cantore V, Boari F, Pace B, Bianco VV, Bianchimano V, 2007. Brakish water and physiological aspects of artichoke. Acta Hortic. 730:231-7. DOI: https://doi.org/10.17660/ActaHortic.2007.730.29
Carillo P, Ciarmiello LF, Woodrow P, Corrado G, Chiaiese P, Rouphael Y. 2020. Enhancing Sustainability by Improving Plant Salt Tolerance through Macro- and Micro-Algal Biostimulants. Biol. 9:253. DOI: https://doi.org/10.3390/biology9090253
Cavaiuolo M, Ferrante A, 2014. Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads. Nutrients 6:1519-38. DOI: https://doi.org/10.3390/nu6041519
Chan TYK, 1996. Food-borne nitrates and nitrites as a cause of methemoglobinemia. Southeast Asian J. Trop. Med. Public Health 27:189-92.
Chartzoulakis K, Klapaki, 2000. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci. Hortic. 86:247-260. DOI: https://doi.org/10.1016/S0304-4238(00)00151-5
Cucci G, Cantore V, Boari F, De Caro A, 2000. Water salinity and influence of SARon yield and quality parameters in tomato. Acta Hortic. 537:663-70. DOI: https://doi.org/10.17660/ActaHortic.2000.537.78
Cucci G, Lacolla G, Boari F, Cantore V, 2014. Yield response of fennel (Foeniculumvulgare Mill.) to irrigation with saline water. Acta Agric. Scand. –B –Plant SoilSci. 64:129-34. DOI: https://doi.org/10.1080/09064710.2014.888469
D’Amato R, Del Buono D, 2021. Use of a Biostimulant to Mitigate Salt Stress in Maize Plants. Agron. 11:1755. DOI: https://doi.org/10.3390/agronomy11091755
D’Antuono LF, Elementi S, Neri R, 2009. Exploring new potential health promoting vegetables: glucosinolates and sensory attributes of rocket salads and related Diplotaxis and Eruca species. J. Sci. Food Agric. 89:713-22. DOI: https://doi.org/10.1002/jsfa.3507
de Vos AC, Broekman R, de Almeida Guerra CC, van Rijsselberghe M, Rozema J, 2013. Developing and testing new halophyte crops: a case study of salt tolerance of two species of the Brassicaceae, Diplotaxis tenuifolia and Cochlearia officinalis. Environ. Exp. Bot. 92:154-64. DOI: https://doi.org/10.1016/j.envexpbot.2012.08.003
Dell’Aversana E, D’Amelia L, De Pascale S, Carillo P, 2020. Use of Biostimulants to Improve Salinity Tolerance in Agronomic Crops. In: Agronomic Crops, Vol. 3, Stress responses and tolerance, pp 423-41. Springer, Mirza Hasanuzzaman Ed. DOI: https://doi.org/10.1007/978-981-15-0025-1_21
Di Mola I, Rouphael Y, Colla G, Fagnano M, Paradis, R, Mori M, 2017. Morphophysiological traits and nitrate content of greenhouse lettuce as affected by irrigation with saline water. HortScience, 52:1716-21. DOI: https://doi.org/10.21273/HORTSCI12501-17
Di Mola I, Ottaiano L, Cozzolino E, Senatore M, Giordano M, El-Nakhel C, Sacco A, Rouphael Y, Colla G, Mori M, 2019. Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants 8:522. DOI: https://doi.org/10.3390/plants8110522
Di Mola I, Cozzolino E, Ottaiano L, Nocerino S, Rouphael Y, Colla G, El-Nakhel C, Mori M, 2020. Nitrogen use and uptake efficiency and crop performance of baby spinach (Spinacia oleracea L.) and Lamb’s Lettuce (Valerianella locusta L.) grown under variable sub-optimal N regimes combined with plant-based biostimulant application. Agron. 10:278. DOI: https://doi.org/10.3390/agronomy10020278
Di Mola I, Conti S, Cozzolino E, Melchionna G, Ottaiano L, Testa A, Sabatino L, Rouphael Y, Mori, M, 2021. Plant-based protein hydrolysate improves salinity tolerance in Hemp: agronomical and physiological aspects. Agron. 11:342. DOI: https://doi.org/10.3390/agronomy11020342
Di Mola I, Conti S, Bartak M, Cozzolino E, Ottaiano L, Giordano D, Melchionna G , Mormile P, Rippa M, Beltrame L, El-Nakhel C, Corrado G, Rouphael Y, Mori M, 2022a. Greenhouse Photoluminescent PMMA Panels Improve the Agronomical and Physiological Performances of Lettuce (Lactuca sativa L.). Horticulturae 8:913. DOI: https://doi.org/10.3390/horticulturae8100913
Di Mola I, Ottaiano L, Cozzolino E, El-Nakhe, C, Rippa M, Mormile P, Corrado G, Rouphael Y, Mori M, 2022b. Assessment of Yield and Nitrate Content of Wall Rocket Grown under Diffuse-Light or Clear-Plastic Films and Subjected to Different Nitrogen Fertilization Levels and Biostimulant Application. Horticulturae 8:138. DOI: https://doi.org/10.3390/horticulturae8020138
Di Mola I, Petropoulos SA, Ottaiano L, Cozzolino E, El-Nakhel C, Rouphael Y, Mori M, 2023. Bioactive Compounds, Antioxidant Activity, and Mineral Content of Wild Rocket (Diplotaxis tenuifolia L.) Leaves as Affected by Saline Stress and Biostimulant Application. Appl. Sci. 13:1569. DOI: https://doi.org/10.3390/app13031569
Di Venere D, Calabrese N, Linsalata V, Cardinali A, Bianco VV, 2000. Influence of sowing time on phenolic composition of rocket. Acta Hortic. 533:343-50. DOI: https://doi.org/10.17660/ActaHortic.2000.533.42
El-Hendawy SE, Hu Y, Schmidhalter U, 2005. Growth, ion content, gas exchange, and water relations of wheat genotypes differing in salt tolerances. Austr. J. Agric. Res. 56:123-34. DOI: https://doi.org/10.1071/AR04019
El-Nakhel C, Cozzolino E, Ottaiano L, Petropoulos SA, Nocerino S, Pelosi ME, Rouphael Y, Mori M, Di Mola I, 2022. Effect of Biostimulant Application on Plant Growth, Chlorophylls and Hydrophilic Antioxidant Activity of Spinach (Spinacia oleracea L.) Grown under Saline Stress. Horticulturae 8:971 DOI: https://doi.org/10.3390/horticulturae8100971
Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003.
Flagella Z, Cantore V, Giuliani MM, Tarantino E, De Caro A, 2002. Crop salt tolerance: physiological, yield and quality aspects. In: Pandalai SG. (Ed.), RecentRes. Devel. Plant Biol. 2:155-86.
Franzoni G, Cocetta G, Trivellini A, Ferrante A, 2020. Transcriptional regulation in rocket leaves as affected by salinity. Plants 9:20. DOI: https://doi.org/10.3390/plants9010020
Gangolli SD, Van den Brandt PA, Feron VJ, Jan-Zowsky C, Koeman JH, Speijers G.A, Spiegelhalder B, Walker R, Winshnok JS 1994 Nitrate, nitrite and N-nitroso compounds. Eur. J. Pharmacol. Environ. Toxicol. Pharmacol. 292:1-38. DOI: https://doi.org/10.1016/0926-6917(94)90022-1
Gao H-J, Yang H-Y, Bai J-P, Liang XY, Lou Y, Zhang J-L, Wang D, Zhang J-L, Niu S-Q, Ying-Long Chen Y-L, 2015. Ultrastructural and physiological responses of potato (SolanumtuberosumL.) plantlets to gradient saline stress. Front. Plant Sci. 5:787. DOI: https://doi.org/10.3389/fpls.2014.00787
Grattan SR, Grieve CM, 1999. Salinity-mineral nutrient relations horticultural crops. Sci. Hortic. 78:127-57. DOI: https://doi.org/10.1016/S0304-4238(98)00192-7
Greer FR, Shannon M, 2005. Committee on Nutrition, & Committee on Environmental Health. Infant methemoglobinemia: the role of dietary nitrate in food and water. Pediatrics 116:784-6. DOI: https://doi.org/10.1542/peds.2005-1497
Halpern M, Bar-Taly A, Ofeky M, Minzy D, Mullerx T, and Yermiyahu U, 2015. The Use of Biostimulants for Enhancing Nutrient uptake. Advances in Agronomy, First Edition, 2015:141-74. DOI: https://doi.org/10.1016/bs.agron.2014.10.001
Hannachi S, Steppe K, Eloudi M, Mechi L, Bahrini I, Van Labeke M.-C. 2022. Salt Stress Induced Changes in Photosynthesis and Metabolic Profiles of One Tolerant (‘Bonica’) and One Sensitive (‘Black Beauty’) Eggplant Cultivars (Solanum melongena L.). Plants 11:590. DOI: https://doi.org/10.3390/plants11050590
Hargreaves GH, Samani ZA, 1985. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1:96-9. DOI: https://doi.org/10.13031/2013.26773
Hedges LJ, Lister CE, 2007. Nutritional attributes of herbs. Crop & Food Research Confidential 2007 New Zealand Institute for Crop & Food Research Limited, Report No. 1891.
Hernandez JA, Olmos E, Corpas FJ, Sevilla F, del Rio LA, 1995. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci. 105:151-67. DOI: https://doi.org/10.1016/0168-9452(94)04047-8
IPCC, 2019. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, And Greenhouse Gas Fluxes in Terrestrial Ecosystems - Summary for Policymakers.
Isayenkov SV, Maathuis FJ, 2019. Plant salinity stress: many unanswered questions remain. Frontiers in plant science, 10:80. DOI: https://doi.org/10.3389/fpls.2019.00080
Kafi M, Rahimi Z, 2011. Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleracea L.). Soil Sci. Plant Nutr. 57:341-7. DOI: https://doi.org/10.1080/00380768.2011.567398
Lamian A, Badi HN, Mehrafarin A, Sahandi MS, 2017. Changes in essential oil and morpho-physiological traits of tarragon (Artemisia dracuncalus L.) in responses to arbuscular mycorrhizal fungus, AMF (Glomus intraradices NC Schenck & GS Sm.) inoculation under salinity. Acta agriculturae Slovenica 109:215-27. DOI: https://doi.org/10.14720/aas.2017.109.2.06
Limantara L, Dettlinga M, Indrawatia R, Indriatmokoa, Brotosudarmoa THP, 2015. Analysis on the Chlorophyll Content of Commercial Green Leafy Vegetables. Procedia Chem. 14:225-31. DOI: https://doi.org/10.1016/j.proche.2015.03.032
Lovelli S, Perniola M, Di Tommaso T, Bochicchio R, & Amato M. 2012. Specific root length and diameter of hydroponically-grown tomato plants under salinity. J. Agron. 11:1. DOI: https://doi.org/10.3923/ja.2012.101.106
Lucini L, Rouphael Y, Cardarelli M, Canaguier R, Kumar P, Colla G, 2015. The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hortic. 182:124-13. DOI: https://doi.org/10.1016/j.scienta.2014.11.022
Lucini L, Borgognone D, Rouphael Y, Cardarelli M, Bernardi J, and Colla G, 2016- Mild Potassium Chloride Stress Alters the Mineral Composition, Hormone Network, and Phenolic Profile in Artichoke Leaves. Front. Plant Sci. 7:948. DOI: https://doi.org/10.3389/fpls.2016.00948
Maas EV, Hoffman GJ, 1977. Crop salt tolerance –current assessment. J. Irr. and Drain. Div. ASCE 103:115-34. DOI: https://doi.org/10.1061/JRCEA4.0001137
Moncada A, Vetrano F, Miceli A, 2020. Alleviation of Salt Stress by Plant Growth-Promoting Bacteria in Hydroponic Leaf Lettuce. Agron. 10:1523. DOI: https://doi.org/10.3390/agronomy10101523
Munns R, 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25:239-50. DOI: https://doi.org/10.1046/j.0016-8025.2001.00808.x
Munns R, 2005. Genes and salt tolerance: bringing them together. New Phytol. 167:645-63. DOI: https://doi.org/10.1111/j.1469-8137.2005.01487.x
Munns R, Tester M, 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant. Biol. 59:651-81. DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911
Munns R, & Gilliham, M. 2015. Salinity tolerance of crops–what is the cost? New Phytol. 208:668-73. DOI: https://doi.org/10.1111/nph.13519
Ottaiano L, Mola ID, Cozzolino E, El-Nakhel C, Rouphael Y 2021. Biostimulant Application under Different Nitrogen Fertilization Levels: Assessment of Yield, Leaf Quality, and Nitrogen Metabolism of Tunnel-Grown Lettuce. Agron. 11:1613. DOI: https://doi.org/10.3390/agronomy11081613
Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD, 2014. Economics of salt-induced land degradation and restoration Nat. Resour. Forum 38:282-95. DOI: https://doi.org/10.1111/1477-8947.12054
Qados AMA 2011. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J. Saudi Soc. Agric. Sci. 10:7-15. DOI: https://doi.org/10.1016/j.jssas.2010.06.002
Rahneshan Z, Nasibi F, Moghadam AA, 2018. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J. Plant Intera 13:73-82. DOI: https://doi.org/10.1080/17429145.2018.1424355
Ramos-Bueno RP, Rincón-Cervera MA, González-Fernández MJ, Guil-Guerrero JL, 2016. Phytochemical composition and antitumor activities of new salad greens: rucola (Diplotaxis tenuifolia) and corn salad (Valerianella locusta). PlantFoods Hum. Nutr. 71:197-203. DOI: https://doi.org/10.1007/s11130-016-0544-7
Romero-Aranda R, Soria T, Cuartero J, 2001. Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci. 160:265-72. DOI: https://doi.org/10.1016/S0168-9452(00)00388-5
Rouphael Y, Colla G. 2020 Editorial: Biostimulants in Agriculture. Front. Plant Sci. 11:40. DOI: https://doi.org/10.3389/fpls.2020.00040
Schiattone MI, Candido V, Cantore V, Montesano FF, Boari F, 2017. Water use and crop performance of two wild rocket genotypes under salinity conditions. Agri. Water Manag. 194:214-21. DOI: https://doi.org/10.1016/j.agwat.2017.09.009
Sergio L, De Paola A, Cantore V, Pieralice M, Cascarano NA, Bianco VV, Di Venere D, 2012. Effect of salt stress on growth parameters, enzymatic antioxi-dant system, and lipid peroxidation in wild chicory (Cichorium intybus L.). Acta Physiol. Plant. 34:2349-58. DOI: https://doi.org/10.1007/s11738-012-1038-3
Shah SH, Houborg R, McCabe MF, 2017. Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agron. 7:61. DOI: https://doi.org/10.3390/agronomy7030061
Shahbaz M, Ashraf M, 2013. Improving salinity tolerance in cereals Crit. Rev. Plant Sci. 32:237-49. DOI: https://doi.org/10.1080/07352689.2013.758544
Shalhevet J, Huck M G, & Schroeder B P 1995. Root and shoot growth responses to salinity in maize and soybean. Agro J, 87(3), 512-516. DOI: https://doi.org/10.2134/agronj1995.00021962008700030019x
Snapp SS, Shennan C, 1992. Effects of salinity on root growth and death dynamics of tomato, Lycopersicon esculentum Mill. New Phytol. 121:71-9. DOI: https://doi.org/10.1111/j.1469-8137.1992.tb01094.x
Song P, Wu L, Guan W. 2015 Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: A meta-analysis. Nutrients 7:9872-95. DOI: https://doi.org/10.3390/nu7125505
Sorrentino M, De Diego N, Ugena L, Spíchal, L, Lucini L, Miras-Moreno B, Zhang L, Rouphael, Y, Colla G, Panzarová K, 2021 Seed Priming With Protein Hydrolysates Improves Arabidopsis Growth and Stress Tolerance to Abiotic Stresses. Front. Plant Sci. 12:626301. DOI: https://doi.org/10.3389/fpls.2021.626301
Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A, 2017. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 4:1-12. DOI: https://doi.org/10.1186/s40538-017-0089-5
Vasantha S, Venkataramana S, Rao PNG, Gomathi R, 2010. Long term salinity effect on growth, photosynthesis and osmotic characteristics in sugarcane. Sugar Tech. 12:5-8. DOI: https://doi.org/10.1007/s12355-010-0002-z
Vysotskaya L, Hedley PE, Sharipova G, Veselov D, Kudoyarova G, Morris J, Jones HG. 2010. Effect of salinity on water relations of wild barley plants differing in salt tolerance. AoB PLANTS 2010:plq006. DOI: https://doi.org/10.1093/aobpla/plq006
Walker R. 2000 Nitrate, nitrite and N-nitroso compounds: A review of the occurrence in food and diet and the toxicological implications. Food Addit. Cont. 7:717-68. DOI: https://doi.org/10.1080/02652039009373938
Wang Y, Nil N. 2000 Changes in chlorophyll, ribulose biphosphate carboxylase oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress J. Hortic. Sci. Biotechnol. 75:623-27. DOI: https://doi.org/10.1080/14620316.2000.11511297
Xu G, Fan X, Miller AJ, 2012. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 63:153-82. DOI: https://doi.org/10.1146/annurev-arplant-042811-105532
Yeo AR, Lee KS, Izard P, Bourssier PJ, Flowers TJ, 1991. Short- and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). J. Exp. Bot. 42:881-9. DOI: https://doi.org/10.1093/jxb/42.7.881
Zou Y, Zhang Y, Testerink C, 2022. Root dynamic growth strategies in response to salinity. Plant Cell Environ. 45:695-704. DOI: https://doi.org/10.1111/pce.14205

How to Cite

Sifola, M. I., Di Mola, I., Ottaiano, L., Cozzolino, E., El-Nakhel, C., Rouphael, Y., & Mori, M. (2023). Assessment of yield and nitrate content of wild rocket grown under salinity and subjected to biostimulant application. Italian Journal of Agronomy, 18(2). https://doi.org/10.4081/ija.2023.2187