Spring sown camelina (Camelina sativa) contributes to the management of three summer weeds

Published: 8 February 2024
Abstract Views: 296
PDF: 253
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Noemí Codina Pascual noemi.codina@udl.cat Department of Agricultural and Forest Sciences and Engineering, Universitat de Lleida – Agrotecnio Center, Lleida , Spain.
  • Joel Torra Department of Agricultural and Forest Sciences and Engineering, Universitat de Lleida – Agrotecnio Center, Lleida, Spain.
  • Bàrbara Baraibar Department of Agricultural and Forest Sciences and Engineering, Universitat de Lleida – Agrotecnio Center, Lleida, Spain.
  • Aritz Royo-Esnal Department of Agricultural and Forest Sciences and Engineering, Universitat de Lleida – Agrotecnio Center, Lleida, Spain.

Camelina (Camelina sativa (L.) Crantz) is an attractive drought-tolerant crop for Mediterranean regions due to its rapid growth and ability to out-compete many dicotyledonous winter annual weeds. In this experiment the weed suppression capacity of spring sown camelina against Chenopodium album L. (common lambsquarters), Polygonum aviculare L. (prostrate knotweed), and Xanthium spinosum L. (spiny cocklebur) was studied. The trial was conducted in Lleida (Spain) between 2019 and 2021, and camelina was sown in March each year.  Experimental plots contained quadrats with each weed species as well as weed-free and crop-free quadrats. Height and aboveground biomass of weeds in competition with camelina decreased by over 50% compared to the controls. However, crop and weed growth had seasonal differences depending on the weather conditions: (1) a moderately dry spring promoted crop production (1573 kg ha-1); (2) a rainy spring benefited weed development, negatively affecting crop growth and yield (739 kg ha-1); and (3) a severe dry spring affected growth of both crop and weeds, reducing crop production by up to 80% (298 kg ha-1). The summer weed suppression capacity of camelina is enhanced by drought conditions, which makes camelina useful for managing these weeds.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

AEMET, 2022. AEMET. Agencia Estatal de Meteorología. Ministerio para la transición ecológica. Gob. España Available from:
Ali M, Williams A, Widderick M, Haque MA, Adkins S, 2023. Drought Stress Affects the Reproductive Biology of Avena sterilis ssp. ludoviciana. Land 12:1745. DOI: https://doi.org/10.3390/land12091745
Angelini LG, Moscheni E, Colonna G, Belloni P, Bonari E, 1997. Variation in agronomic characteristics and seed oil composition of new oilseed crops in central Italy. Ind. Crops Prod. 6:313–23. DOI: https://doi.org/10.1016/S0926-6690(97)00022-8
Ballaré CL, Sánchez RA, Scopel AL, Casal JJ, Ghersa CM, 1987. Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant. Cell Environ. 10:551–7. DOI: https://doi.org/10.1111/1365-3040.ep11604091
Barnett TP, Adam JC, Lettenmaier DP, 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–9. DOI: https://doi.org/10.1038/nature04141
Barzman M, Bàrberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P, Lamichhane JR, Messéan A, Moonen AC, Ratnadass A, Ricci P, Sarah JL, Sattin M, 2015. Eight principles of integrated pest management. Agron. Sustain. Dev. 35:1199–215. DOI: https://doi.org/10.1007/s13593-015-0327-9
Batlla D, Benech-Arnold RL, 2003. A quantitative analysis of dormancy loss dynamics in Polygonum aviculare L. seeds: Development of a thermal time model based on changes in seed population thermal parameters. Seed Sci. Res. 13:55–68. DOI: https://doi.org/10.1079/SSR2002124
Berti M, Gesch R, Eynck C, Anderson J, Cermak S, 2016. Camelina uses, genetics, genomics, production, and management. Ind. Crops Prod. 94:690–710. Available from: 10.1016/j.indcrop.2016.09.034 DOI: https://doi.org/10.1016/j.indcrop.2016.09.034
Berti M, Gesch R, Johnson B, Ji Y, Seames W, Aponte A, 2015. Double- and relay-cropping of energy crops in the northern Great Plains, USA. Ind. Crops Prod. 75:26–34. Available from: http://dx.doi.org/10.1016/j.indcrop.2015.05.012 DOI: https://doi.org/10.1016/j.indcrop.2015.05.012
Blackshaw RE, Johnson EN, Gan Y, May WE, McAndrew DW, Barthet V, McDonald T, Wispinski D, 2011. Alternative oilseed crops for biodiesel feedstock on the Canadian prairies. Can. J. Plant Sci. 91:889–96. DOI: https://doi.org/10.4141/cjps2011-002
Borchers A, Truex-Powell E, Wallander S, Nickerson C, 2014. Multi-cropping practices: recent trends in double cropping United States Department of Agriculture. Econ. Inf. Bull. - USDA Econ. Res. Serv. 125:22 pp. Available from:
Codina-Pascual N, Torra J, Baraibar B, Royo-Esnal A, 2022. Weed suppression capacity of camelina (Camelina sativa) against winter weeds: The example of corn-poppy (Papaver rhoeas). Ind. Crops Prod. 184 Available from:
Czarnik M, Jarecki W, Bobrecka-Jamro D, 2017. The effects of varied plant density and nitrogen fertilization on quantity and quality yield of Camelina sativa L. Emirates J. Food Agric. 29:988–93. DOI: https://doi.org/10.9755/ejfa.2017.v29.i12.1569
Dai A, Zhao T, Chen J, 2018. Climate change and drought: a precipitation and evaporation perspective. Curr. Clim. Chang. Reports 4:301–12. DOI: https://doi.org/10.1007/s40641-018-0101-6
Dorado J, Sousa E, Calha IM, González-Andújar JL, Fernández-Quintanilla C, 2009. Predicting weed emergence in maize crops under two contrasting climatic conditions. Weed Res. 49:251–60. DOI: https://doi.org/10.1111/j.1365-3180.2008.00690.x
FAO, 2015. Climate change and food security: Risks and responses. Available from: http://www.fao.org/3/a-i5188e.pdf
FAO, 2017. Global agricultural land use - (FAO). Available from:
Franklin KA, Whitelam GC, 2005. Phytochromes and shade-avoidance responses in plants. Ann. Bot. 96:169–75. DOI: https://doi.org/10.1093/aob/mci165
Gallagher RS, Granger KL, Snyder AM, Pittmann D, Fuerst EP, 2013. Implications of environmental stress during seed development on reproductive and seed bank persistence traits in wild oat (Avena fatua l.). Agronomy 3:537–49. DOI: https://doi.org/10.3390/agronomy3030537
García-Garizábal I, Causapé J, Abrahao R, Merchan D, 2014. Impact of Climate Change on Mediterranean Irrigation Demand: Historical Dynamics of Climate and Future Projections. Water Resour. Manag. 28:1449–62. DOI: https://doi.org/10.1007/s11269-014-0565-7
Gesch RW, 2014. Influence of genotype and sowing date on camelina growth and yield in the north central U.S. Ind. Crops Prod. 54:209–15. Available from:
Hess M, Bleiholder H, Buhr L, Eggers T, Hack H, Strauss R, 1997. Use of the extended BBCH scale - general for the descriptions of the growth stages of mono- and dicotyledonous weed species. Weed Res. 37:433–41. DOI: https://doi.org/10.1046/j.1365-3180.1997.d01-70.x
Holm L, Doll J, Holm E, Pancho J V., Herberger JP, 1997. World Weeds: Natural Histories and Distribution. John Wiley & Sons Inc, New York.
Hunsaker DJ, French AN, Clarke TR, El-Shikha DM, 2011. Water use, crop coefficients, and irrigation management criteria for camelina production in arid regions. Irrig. Sci. 29:27–43. DOI: https://doi.org/10.1007/s00271-010-0213-9
Institut Cartogràfic i Geològic de Catalunya (ICGC), 2019. Mapa de sòls de Catalunya. Soil Taxonomy. :2.
Kanatas P, 2020. Mini-review: The role of crop rotation, intercropping, sowing dates and increased crop density towards a sustainable crop and weed management in arable crops. Agraarteadus 31:22–7.
Krzyżaniak M, Stolarski MJ, Tworkowski J, Puttick D, Eynck C, Załuski D, Kwiatkowski J, 2019. Yield and seed composition of 10 spring camelina genotypes cultivated in the temperate climate of Central Europe. Ind. Crops Prod. 138:111443. Available from: https://doi.org/10.1016/j.indcrop.2019.06.006 DOI: https://doi.org/10.1016/j.indcrop.2019.06.006
Leblanc ML, Cloutier DC, Stewart KA, Hamel C, 2003. The use of thermal time to model common lambsquarters (Chenopodium album) seedling emergence in corn. Weed Sci. 51:718–24. DOI: https://doi.org/10.1614/P2002-108
Liu K, Johnson EN, Blackshaw RE, Hossain Z, Gan Y, 2019. Improving the productivity and stability of oilseed cropping systems through crop diversification. F. Crop. Res. 237:65–73. Available from: https://doi.org/10.1016/j.fcr.2019.03.020 DOI: https://doi.org/10.1016/j.fcr.2019.03.020
Ma X, Hou M, Ma M, 2023. High interspecific competitiveness of the invasive plant Xanthium italicum Moretti severely reduces the yield and quality of Carthamus tinctorius L. Sci. Rep. 13:1–7. Available from: https://doi.org/10.1038/s41598-023-31101-0 DOI: https://doi.org/10.1038/s41598-023-31101-0
Maganti M, Weaver S, Downs M, 2005. Responses of spreading orach (Atriplex patula) and common lambsquarters (Chenopodium album) to soil compaction, drought, and waterlogging. Weed Sci. 53:90–6. DOI: https://doi.org/10.1614/WS-04-143R
MAPA, 2021. Ministerio de Agricultura, Pesca y Alimentación. Estadísticas agrarias sobre Superficies y Rendimientos Cultivos (ESYRCE). Available from: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/
Martinelli T, Galasso I, 2011. Phenological growth stages of Camelina sativa according to the extended BBCH scale. Ann. Appl. Biol. 158:87–94. DOI: https://doi.org/10.1111/j.1744-7348.2010.00444.x
Obeng E, Obour AK, Nelson NO, Ciampitti IA, Wang D, 2021. Nitrogen and sulfur application effects on camelina seed yield, fatty acid composition, and nutrient removal. Can. J. Plant Sci. 101:353–65. DOI: https://doi.org/10.1139/cjps-2020-0104
Obeng E, Obour AK, Nelson NO, Moreno JA, Ciampitti IA, Wang D, Durrett TP, 2019. Seed yield and oil quality as affected by Camelina cultivar and planting date. J. Crop Improv. 33:202–22. Available from:
Peralta J, 2019. Flora Arvense de Navarra. Herb. La Univ. Pública Navarra Available from: https://www.unavarra.es/herbario/htm/inicio.htm
Pruess KP, 1983. Day-Degree methods for Pest Management. Environ. Entomol. 12:613–9. DOI: https://doi.org/10.1093/ee/12.3.613
Putnam DH, Budin JT, Field LA, Breene WM, 1993. Camelina: A promising low- input oilseed. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 314–22.
Recasens Ginjuan J, Conesa Mor JA, 2009. Malas hierbas en plántula. Guía de identificación. Universitat de Lleida, Lleida.
Righini D, Zanetti F, Martínez-Force E, Mandrioli M, Toschi TG, Monti A, 2019. Shifting sowing of camelina from spring to autumn enhances the oil quality for bio-based applications in response to temperature and seed carbon stock. Ind. Crops Prod. 137:66–73. Available from: https://doi.org/10.1016/j.indcrop.2019.05.009 DOI: https://doi.org/10.1016/j.indcrop.2019.05.009
Ringselle B, Prieto-Ruiz I, Andersson L, Aronsson H, Bergkvist G, 2017. Elymus repens biomass allocation and acquisition as affected by light and nutrient supply and companion crop competition. Ann. Bot. 119:477–85. DOI: https://doi.org/10.1093/aob/mcw228
Royo-Esnal A, García A, Torra J, Forcella; F, Recasens J, 2015. Describing Polygonum aviculare emergence in different tillage systems 2. Eur. Weed Res. Soc. 55:387–95. DOI: https://doi.org/10.1111/wre.12154
Royo-Esnal A, Onofri A, Loddo D, Necajeva J, Jensen PK, Economou G, Taab A, Synowiec A, Calha IM, Andersson L, Uludag A, Uremis I, Murdoch AJ, Tørresen KS, 2022. Comparing the emergence of Echinochloa crus-galli populations in different locations. Part I: Variations in emergence timing and behaviour of two populations. Weed Res. 62:192–202. DOI: https://doi.org/10.1111/wre.12525
Royo-Esnal A, Valencia-Gredilla F, 2018. Camelina as a rotation crop for weed control in organic farming in a semiarid Mediterranean climate. Agriculture 8:1–10. DOI: https://doi.org/10.3390/agriculture8100156
SAS Institute INC Cary USA, 2022. JMP Pro 16.2.
Scott DA, Eberle C, Gesch RW, Schneider S, Weyers S, Johnson JMF, 2021. Yield, nitrogen, and water use benefits of diversifying crop rotations with specialty oilseeds. Agric. Ecosyst. Environ. 317:107472. Available from:
Singh HP, Batish DR, Kohli & RK, Kohli RK, 1999. Critical reviews in Plant Sciences Autotoxicity : concept , organisms , and ecological significance. CRC. Crit. Rev. Plant Sci. 18:757–72. DOI: https://doi.org/10.1080/07352689991309478
Smith AM, Burns EE, 2022. Impacts of drought intensity and weed competition on drought-tolerant corn performance. Weed Sci. 70:455–62. DOI: https://doi.org/10.1017/wsc.2022.34
Stuefer JF, Huber H, 1998. Differential effects of light quantity and spectral light quality on growth, morphology and development of two stoloniferous Potentilla species. Oecologia 117:1–8. DOI: https://doi.org/10.1007/s004420050624
Weber E, Gut D, 2005. A survey of weeds that are increasingly spreading in Europe. Agronomie 25:109–21. DOI: https://doi.org/10.1051/agro:2004061
Weijschedé J, Martínková J, De Kroon H, Huber H, 2006. Shade avoidance in Trifolium repens: Costs and benefits of plasticity in petiole length and leaf size. New Phytol. 172:655–66. DOI: https://doi.org/10.1111/j.1469-8137.2006.01885.x
Wittenberg A, Anderson J V., Berti MT, 2019. Winter and summer annual biotypes of camelina have different morphology and seed characteristics. Ind. Crops Prod. 135:230–7. Available from: https://doi.org/10.1016/j.indcrop.2019.04.036 DOI: https://doi.org/10.1016/j.indcrop.2019.04.036
Wittenberg A, Anderson J V., Berti MT, 2020. Crop growth and productivity of winter camelina in response to sowing date in the northwestern Corn Belt of the USA. Ind. Crops Prod. 158:113036. Available from:
Woetzel J, Pinner D, Samandari H, Engel H, Krishnan M, Vasmel M, von der Leyen J, 2020. A Mediterranean basin without a Mediterranean climate. McKinsey Glob. Inst.:24.
Zanetti F, Alberghini B, Marjanović Jeromela A, Grahovac N, Rajković D, Kiprovski B, Monti A, 2021. Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review. Agron. Sustain. Dev. 41. DOI: https://doi.org/10.1007/s13593-020-00663-y

How to Cite

Codina Pascual, N., Torra, J., Baraibar, B., & Royo-Esnal, A. (2024). Spring sown camelina (<i>Camelina sativa</i>) contributes to the management of three summer weeds . Italian Journal of Agronomy, (Early Access). https://doi.org/10.4081/ija.2024.2211