A comparison of soil water infiltration models of moistube irrigation

Published: 6 March 2024
Abstract Views: 232
PDF: 203
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Binnan Li College of Water Conservancy and Engineering, Taiyuan University of Technology, Taiyuan, China.
  • Lixia Shen shenlixia@tyut.edu.cn College of Water Conservancy and Engineering, Taiyuan University of Technology, Taiyuan, China.
  • Shuhui Liu College of Water Conservancy and Engineering, Taiyuan University of Technology, Taiyuan, China.

As a water-saving method, moistube irrigation has been widely used. To ensure the effectiveness of moistube irrigation the development of an infiltration prediction model under moistube irrigation based on the interaction of multiple factors is required. In this paper, soil water infiltration tests with different bulk densities (1.2 g/cm³, 1.3 g/cm³, and 1.4 g/cm³) and textures (loamy sand, sandy loam, and clay loam) under different pressure heads (1m, 1.5m, and 2m) were designed, and the test data were analyzed by gray correlation theory. The pressure head, bulk density, clay content, silt content, sand content, and initial water content were determined as input variables, and the model structure was composed with two parameters of Kostiakov's model as output variables. Then, the genetic algorithm was used to optimize the back propagation neural network and the particle swarm algorithm to optimize the support vector machine. The soil moisture prediction model under moistube irrigation was established, finally the model was compared and analyzed. The results showed that the consistency effect of the two models was good. However, compared with the BP neural network prediction model optimized by genetic algorithm, the particle swarm algorithm optimized the support vector machine based moistube irrigation prediction model had higher accuracy. The results of this experiment can provide theoretical support for the exploration and modelling prediction of soil water infiltration under moistube irrigation.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Basheer, I. A. & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods 43(1): 3-31.http://dx.doi.org/10.1016/S0167-7012(00)00201-3 DOI: https://doi.org/10.1016/S0167-7012(00)00201-3
Bekiroglu, S., Dede, T. & Ayvaz, Y. (2009). Implementation of different encoding types on structural optimization based on adaptive genetic algorithm. Finite elements in analysis design 45(11): 826-835.http://dx.doi.org/10.1016/j.finel.2009.06.019 DOI: https://doi.org/10.1016/j.finel.2009.06.019
Cai, X., Chen, J., Ji, Y., Liu, M. & Liu, W. (2019). Structural Optimization and Performance Prediction of a Compact Flotation Unit Using GA-BP Neural Network with Computational Fluid Dynamics Simulation. Environmental Engineering Science 36(9): 1185-1198.http://dx.doi.org/10.1089/ees.2018.0327 DOI: https://doi.org/10.1089/ees.2018.0327
Chauhan, V. K., Dahiya, K. & Sharma, A. (2019). Problem formulations and solvers in linear SVM: a review. Artificial Intelligence Review 52(2): 803-855.http://dx.doi.org/10.1007/s10462-018-9614-6 DOI: https://doi.org/10.1007/s10462-018-9614-6
Christiansen, M. H., Kelly, M. L., Shillcock, R. C. & Greenfield, K. (2010). Impaired artificial grammar learning in agrammatism. Cognition 116(3): 382-393.http://dx.doi.org/10.1016/j.cognition.2010.05.015 DOI: https://doi.org/10.1016/j.cognition.2010.05.015
Dao, T. H. (1993). Tillage and winter wheat residue management effects on water infiltration and storage. Soil Science Society of America Journal 57(6): 1586-1595.http://dx.doi.org/10.2136/sssaj1993.03615995005700060032x DOI: https://doi.org/10.2136/sssaj1993.03615995005700060032x
Dirwai, T. L., Mabhaudhi, T., Kanda, E. K. & Senzanje, A. (2021). Moistube irrigation technology development, adoption and future prospects: A systematic scoping review. Heliyon 7(2): e06213.http://dx.doi.org/10.1016/j.heliyon.2021.e06213 DOI: https://doi.org/10.1016/j.heliyon.2021.e06213
Dirwai, T. L., Senzanje, A. & Mabhaudhi, T. (2022). Development and validation of a model for soil wetting geometry under Moistube Irrigation. Scientific Reports 12(1): 1-13.http://dx.doi.org/10.1038/s41598-022-06763-x DOI: https://doi.org/10.1038/s41598-022-06763-x
Embrechts, M. J., Rossi, F., Schleif, F. M. & Lee, J. A. (2014). Advances in artificial neural networks, machine learning, and computational intelligence (ESANN 2013). Neurocomputing 141: 1-2.http://dx.doi.org/10.1016/j.neucom.2014.03.002 DOI: https://doi.org/10.1016/j.neucom.2014.03.002
Hamududu, B. H. & Ngoma, H. (2020). Impacts of climate change on water resources availability in Zambia: implications for irrigation development. Environment, Development and Sustainability 22(4): 2817-2838.http://dx.doi.org/10.1007/s10668-019-00320-9 DOI: https://doi.org/10.1007/s10668-019-00320-9
Hasan, M., Chowdhury, T., Drabo, M., Kassu, A. & Glenn, C. (2015). Modeling of Infiltration Characteristics by Modified Kostiakov Method. Journal of Water Resource Protection 7(16): 1309-1317.http://dx.doi.org/10.4236/jwarp.2015.716106 DOI: https://doi.org/10.4236/jwarp.2015.716106
He, C., Xing, J. C., Zhu, R. D., Li, J. L., Yang, Q. L., Xie, L. Q. & Ieee (2013).A New Model for Software Defect Prediction Using Particle Swarm Optimization and Support Vector Machine. In 25th Chinese Control and Decision Conference (CCDC), 4106-4110 Guiyang, PEOPLES R CHINA.
Jain, A. K., Mao, J. & Mohiuddin, K. M. (1996). Artificial Neural Networks. Computer 29(3): 31-44.http://dx.doi.org/10.1109/2.485891 DOI: https://doi.org/10.1109/2.485891
Jain, L. C. (2010). Advances in design and application of neural networks. Neural Computing Applications 19(2): 167-168.http://dx.doi.org/10.1007/s00521-010-0345-0 DOI: https://doi.org/10.1007/s00521-010-0345-0
Khamidov, M. (2019). Water-saving irrigation technology as a way of using water resources sustainably in the Khorezm oasis. International Journal of Innovative Technology Exploring Engineering 9(2): 851-856.http://dx.doi.org/10.35940/ijitee.B6718.129219 DOI: https://doi.org/10.35940/ijitee.B6718.129219
Kun, T., Qianqian, Z., Qian, C. & Peijun, D. (2015). Hyperspectral Retrieval Model of Soil Organic Matter Content Based on Particle Swarm Optimization-Support Vector Machines. Earth Science(Journal of China University of Geosciences) 40(8): 1339-1345.http://dx.doi.org/10.3799/dqkx.2015.115 DOI: https://doi.org/10.3799/dqkx.2015.115
León, J., Echeverría, M., Martí, C. & Badía, D. (2015). Can ash control infiltration rate after burning? An example in burned calcareous and gypseous soils in the Ebro Basin (NE Spain). Catena 135: 377-382.http://dx.doi.org/10.1016/j.catena.2014.05.024 DOI: https://doi.org/10.1016/j.catena.2014.05.024
Leung, F., Lam, H. K., Ling, S. H. & Tam, P. (2003). Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Trans Neural Netw 14(1): 79-88.http://dx.doi.org/10.1109/TNN.2002.804317 DOI: https://doi.org/10.1109/TNN.2002.804317
Li, Y. K., Tian, Y. J., Ouyang, Z. Y., Wang, L. Y., Xu, T. W., Yang, P. L. & Zhao, H. X. (2010). Analysis of soil erosion characteristics in small watersheds with particle swarm optimization, support vector machine, and artificial neuronal networks. Environmental Earth Sciences 60(7): 1559-1568.http://dx.doi.org/10.1007/s12665-009-0292-1 DOI: https://doi.org/10.1007/s12665-009-0292-1
Liang, Y. J., Ren, C., Wang, H. Y., Huang, Y. B. & Zheng, Z. T. (2019). Research on soil moisture inversion method based on GA-BP neural network model. International Journal of Remote Sensing 40(5-6): 2087-2103 DOI: https://doi.org/10.1080/01431161.2018.1484961
Lin, S. W., Ying, K. C., Chen, S. C. & Lee, Z. J. (2008). Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Systems with Applications 35(4): 1817-1824.http://dx.doi.org/10.1016/j.eswa.2007.08.088 DOI: https://doi.org/10.1016/j.eswa.2007.08.088
Magnus, Igboekwe, U., Ruth & Adindu, U. (2014). Use of Kostiakov's Infiltration Model on Michael Okpara University of Agriculture, Umudike Soils, Southeastern, Nigeria. Journal of Water Resource Protection.http://dx.doi.org/10.4236/jwarp.2014.610083 DOI: https://doi.org/10.4236/jwarp.2014.610083
Ming, X., Bo, W., Juan, L., Cihao, C., Minhui, H. & Lin-xin, Z. (2021). Forecast Method of Soil Moisture Based on Improved BP Neural Network and Support Vector Machine. Chinese Journal of Soil Science 52(4): 793-800.http://dx.doi.org/10.19336/j.cnki.trtb.2020052501
Naglič, B., Kechavarzi, C., Coulon, F. & Pintar, M. (2014). Numerical investigation of the influence of texture, surface drip emitter discharge rate and initial soil moisture condition on wetting pattern size. Irrigation science 32(6): 421-436.http://dx.doi.org/10.1007/s00271-014-0439-z DOI: https://doi.org/10.1007/s00271-014-0439-z
Niu, W., Zhang, M., Xu, J., Zou, X., Zhang, R. & Li, Y. (2017). Prediction methods and characteristics of flow for Moistube. Transactions of the CSAM 48(6): 217-224.http://dx.doi.org/10.6041/j.issn.1000-1298.2017.06.028
O'Brien, W. L., Jia, J., Dong, Q. Y., Callcott, T. A., Miyano, K. E., Ederer, D. L., Mueller, D. R. & Kao, C. C. (2014). Evaluation on backstepping method of infiltration parameters of soil water under furrow irrigation based on the software SRFR. Agricultural Research in the Arid Areas 32(4): 59-64.http://dx.doi.org/10.1103/PhysRevB.47.140 DOI: https://doi.org/10.1103/PhysRevB.47.140
Qin, W. & Fan, G. (2021). Estimating parameters for the Van Genuchten model from soil physical-chemical properties of undisturbed loess-soil. Earth Science Informatics (3): 14.http://dx.doi.org/10.1007/s12145-020-00503-3 DOI: https://doi.org/10.1007/s12145-020-00503-3
Qiu, Z. N., Jiang, P. F. & Xiao, J. (2015). Experimental Study on Influence of Water Temperature on Outflows of Low Pressure Moistube. Water Saving Irrigation 3: 12–14
Sattari, M. T., Mirabbasi, R., Dolati, H., Sureh, F. S. & Ahmad, S. (2020). Investigating the Effect of Managing Scenarios of Flow Reduction and Increasing Irrigation Water Demand on Water Resources Allocation Using System Dynamics (Case Study: Zonouz Dam, Iran). Tekirdag Ziraat Fakultesi Dergisi 17(3): 406-421.http://dx.doi.org/10.33462/jotaf.703167 DOI: https://doi.org/10.33462/jotaf.703167
Song, Z. B., Liu, S. R., Jiang, M. Y. & Yao, S. L. (2022). Research on the Settlement Prediction Model of Foundation Pit Based on the Improved PSO-SVM Model. Scientific Programming 2022.http://dx.doi.org/10.1155/2022/1921378 DOI: https://doi.org/10.1155/2022/1921378
Sun, G., Li, Y., Liu, X., Cui, N., Gao, Y. & Yang, Q. (2019). Effect of Moistube Fertigation on Infiltration and Distribution of Water-Fertilizer in Mixing Waste Biomass Soil. Sustainability 11.http://dx.doi.org/10.3390/su11236757 DOI: https://doi.org/10.3390/su11236757
Utin, U. E. & Oguike, P. C. (2018). Evaluation of Philip's and Kostiakov's Infiltration Models on Soils Derived from three Parent Materials in Akwa Ibom State, Nigeria. The Journal of Scientific Engineering Research
White, H. (1989). Learning in Artificial Neural Networks: A Statistical Perspective. Neural Computation 1(4): 425-464.http://dx.doi.org/10.1162/neco.1989.1.4.425 DOI: https://doi.org/10.1162/neco.1989.1.4.425
Xue, W. L., Niu, W. Q., Zhang, J., Zhe-Guang, W. U. & Luo, C. Y. (2013). Effects of Hydraulic Head on Soil Water Movement under Moistube-irrigation. Journal of Irrigation Drainage 32(6): 7-11.http://dx.doi.org/10.7631/j.issn.1672-3317.2013.06.002
Xue, X., Junfeng, C., Xiuqing, Z., Jing, X., Xiaoyan, Z., Xinyu, D. & Yizhao, W. (2020). Freeze-Thaw Soil Evaporation Forecast Model Based on PCA-PSO-SVM. Water Saving Irrigation (1): 61-65.http://dx.doi.org/10.3969/j.issn.1007-4929.2020.01.014
Yang, J. & Honavar, V. (2002). Feature subset selection using a genetic algorithm. IEEE Intelligent Systems Their Applications 13(2): 44-49.http://dx.doi.org/10.1109/5254.671091 DOI: https://doi.org/10.1109/5254.671091
Yang, J. L. & Zhang, G. L. (2011). Water infiltration in urban soils and its effects on the quantity and quality of runoff. Journal of soil sediments 11(5): 751–761.http://dx.doi.org/10.1007/s11368-011-0356-1 DOI: https://doi.org/10.1007/s11368-011-0356-1
Yuen, S. & Chow, C. (2009). A Genetic Algorithm That Adaptively Mutates and Never Revisits. IEEE Transactions on Evolutionary Computation 13(2): 454-472.http://dx.doi.org/10.1109/TEVC.2008.2003008 DOI: https://doi.org/10.1109/TEVC.2008.2003008
Zhang, G., Shen, L. & Guo, Y. (2016). Effect of Soil Structure on Water Infiltration under Moistube Irrigation. Journal of Irrigation Drainage 35(7): 35-38.http://dx.doi.org/10.13522/j.cnki.ggps.2016.07.006
Zhang, G., Shen, L. & Guo, Y. (2017). Effect of pressure heads and soil bulk density on water infiltration under moistube irrigation. Agricultural Research in the Arid Areas
Zhang, S., Guo, X., Bi, Y., Lei, T. & Lei, M. (2018). Effects of Tube Depth and Pressure Head on Soil Water Cumulative Infiltration under Moistube-irrigation. Water Saving Irrigation (3): 19-22.http://dx.doi.org/10.3969/j.issn.1007-4929.2018.03.005
Zhou, X., Zhang, Y., Sheng, Z., Manevski, K. & Yang, Y. (2021). Did water-saving irrigation protect water resources over the past 40 years? A global analysis based on water accounting framework. Agricultural Water Management 249(C): 106793.http://dx.doi.org/10.1016/j.agwat.2021.106793 DOI: https://doi.org/10.1016/j.agwat.2021.106793
Zilov, E. J. W. R. (2013). Water resources and the sustainable development of humankind: International cooperation in the rational use of freshwater-lake resources: Conclusions from materials of foreign studies. Water Resources 40(1): 84-95.http://dx.doi.org/10.1134/S0097807812030116 DOI: https://doi.org/10.1134/S0097807812030116

How to Cite

Li, B., Shen, L., & Liu, S. (2024). A comparison of soil water infiltration models of moistube irrigation. Italian Journal of Agronomy, (Early Access). https://doi.org/10.4081/ija.2024.2216