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Abstract
In optical remote sensing studies, the reflectance of the vegetation canopy in arid and semiarid areas is affected by
the optical properties of the vegetation elements, their arrangement in the vegetation canopy and the optical prop-
erties of the surrounding environment. The study of vegetation and surrounding environment parameters presents
significant peculiarities in arid areas. Low vegetation cover leads to a small contribution of vegetation reflectance
in the total pixel reflectance relative to the other materials. Most types of dry ecosystem shrubs do not differ enough
from one another to allow discernment of vegetation type. Vegetation in arid and semiarid areas adapts its struc-
ture and phenology to the harsh environment, which affects the overall brightness and temporal and spatial inter-
species spectral variability. Moreover, the surrounding environment in dry ecosystem influences the reflectance of
the vegetation by multiple scattering and nonlinear mixing and variable spectral composition of soil surface. 
Many remote sensing techniques are insensitive to nonphotosynthetic vegetation, which can be a major component
of total cover in dry ecosystem areas. Spectral mixture analysis (SMA) appears to be the most promising technique
to obtain information on vegetation cover, soil surface type and vegetation canopy characteristics. The empirical sig-
nature libraries of the world’s dominant vegetation types could be upgraded for use with SMA.

Key-words: desertification, remote sensing, vegetation, dryland, spectral mixture analysis.

1. Introduction

The concept of desertification dates back to
colonial West Africa in the 1920s and 1930s, and
was revived in the early 1970s in an attempt to
understand the effects of a long series of
drought years that brought environmental
degradation, economic difficulty and hunger to
the African Sahel (Lonergan, 2005). Many stud-
ies and assessments of dryland ecosystems since
the United Nations Conference on Desertifica-
tion (UNCOD) in 1977 have led to a valuable
new understanding of the desertification issue.
These studies pointed out significant shortcom-
ings in terms of data and methodologies. More-
over, they call for the improvement of science
and technology for environmental monitoring,
assessment models, accurate databases and in-
tegrated information systems (Lonergan, 2005).
Remote sensing is a technology that can be

used to measure and monitor important bio-
physical and biochemical characteristics of ob-
jects, as well as human activities on the Earth
(Jensen, 2000). The meaning and value of re-
mote sensing data is enhanced through skilled
interpretation used in conjunction with conven-
tionally mapped information and ground-col-
lected data (Jensen, 2000). Remote sensing has
long been suggested as a time and cost efficient
method for observing dryland ecosystem envi-
ronments (Hassan and Luscombe, 1990).
Optical remote sensing (0.3-15 μm), both

spaceborne and airborne, provides valuable
tools for evaluating areas subject to desertifica-
tion. It is used in many applications such as: 1)
mapping and monitoring land use and land cov-
er change and degradation, sand dunes, study-
ing organic carbon in the surface soil layer, de-
riving information about chemical components
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and mapping areas affected by high salt con-
centration; 2) studying dryland geomorphology;
3) evaluating the vegetation conditions (e.g.
vigour, photosynthetic capacity or stress of veg-
etation canopy or cluster); 4) studying the at-
mospheric conditions by detecting mineral
aerosols – dust suspended in the air – and wa-
ter vapour in the atmosphere; 5) detecting the
extent of desert (Okin and Robert, 2004).
Earth observation data, particularly Landsat

Thematic Mapper (TM) and Multispectral Scan-
ner (MSS) imagery, have been widely used in
semiarid environments to show up variations in
vegetation community characteristics from
changes in their reflectance characteristics.
Earth observation data are also used to estimate
vegetation abundance depending on simple re-
lationships between reduced reflectance and in-
creased total plant cover or between a spectral
vegetation index and green vegetation cover
(Pickup, 1995). However, new problems are aris-
ing from the changes in vegetation community
structure observed in the desert environment,
notably due to a gradual increase in bush dom-
inance and changes in the mix of palatable and
unpalatable grasses (Trodd and Dougill, 1998).
This article introduces the reader to the

problems of optical remote sensing in studying
vegetation in dryland and focuses on: (1) study-
ing the reflectance of vegetation and the sur-
rounding environment in a dryland ecosystem;
(2) discussing the techniques used to monitor
and obtain information on the canopy in a dry-
land ecosystem. 

2. Reflectance of vegetation and surrounding
environment in a dryland ecosystem 

In the wavelength range between 400 and 2500
nm, the radiance reflected from a vegetation
canopy is influenced by three main factors re-
lated to the canopy: (1) the optical properties
of the vegetation elements, (2) the arrangement
of these elements in the vegetation canopy and
(3) the optical properties of the environment
around the canopy (soil and atmosphere) (Dori-
go et al., 2007). 
The difficulties facing evaluation of vegeta-

tion using optical remote sensing in a dryland
ecosystem arise from different types of prob-
lems. 

2.1 Anomalies in the optical properties of the
vegetation elements 

Vegetation in a dryland ecosystem suffers from
water scarcity due to low precipitation and high
potential evapotranspiration, so vegetation cov-
er is low. This leads to the small contribution of
vegetation reflectance in the total pixel re-
flectance relative to the other materials in a dry-
land ecosystem. Therefore, the evaluation of
vegetation in a dryland using remote sensing is
not completely accurate (White et al., 2000). 
The above-mentioned concept has the con-

sequences that the spectral properties of vege-
tation elements such as stems, leaves and fruits,
can be considered the major determinant of
canopy reflectance and influence the shape of
the overall spectrum (Dorigo et al., 2007). Stems
in the dryland ecosystem vegetation, play a
small but significant role in determining canopy
reflectance in woody plant canopies, especially
those with leave area index (LAI) < 5.0. How-
ever, this also depends on the location of woody
material within the canopy (Asner, 1998).
Standing litter significantly affects the re-
flectance characteristics of grassland canopies.
Furthermore, small increases in the percentage
of standing litter lead to unproportional changes
in canopy reflectance (Fig. 1). Variation in litter
optical properties plays a secondary role to
structural attributes (e.g., leaf and litter area in-
dex) in determining canopy reflectance (Asner,
1998). 
Regarding the leaves and their reflectance,

we can find that they are spectrally dissimilar
from their humid counterparts. They have
adapted themselves to high temperature and
high evaporation losses by adapting their sur-
face in several ways, such as: reducing leaf size,
avoiding leaves altogether and moving photo-
synthesis to the stalks and stem, shading the
photosynthetic surface by a high density of re-
flective spines and leaf hairs or reducing losses
due to evapotranspiration by a more waxy leaf
cuticle (Ehleringer and Mooney, 1978). These
differences affect the overall brightness of dry-
land vegetation (e.g. creosote – Larrea tridenta-
ta (DC.) Coville var. tridentata), the ratio of
green vegetation to nonphotosynthetic vegeta-
tion within the canopy and perturbation to the
shape of the spectrum at specific wavelengths
(Fig. 2).
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Conditions are worsened by the fact that
natural plants in arid and semiarid areas coor-
dinate their phenological states with the avail-
ability of soil moisture to be able to complete
rapidly their reproductive cycle. Persistent veg-
etation will come out of dormancy when water
becomes available after the dry season or a pe-
riod of drought, begin photosynthesis, and if
time permits, produce flowers and fruits. When
water again becomes scarce, vegetation will re-
sume dormancy and in an extended period of
drought some vegetation will shed their leaves.
The total cycle in dryland regions takes place
during a relatively short growing season (two to
three months). Therefore, no single reflectance
spectrum can represent the full spectral phe-
nology of dryland plants, and spectra repre-
senting different phenological stages must be in-
corporated for quantitative information about
vegetation change in both space and time (Okin
and Robert, 2004).
The inability of the multispectral data to

characterize the vegetation structure can be ex-
plained by the limited dimensionality as follows.
Scientists have known since 1960 that a direct
relationship exists between response in the
near-infrared region and variation of vegetation
biomass. On the other side, there is a inverse re-
lationship between the vegetation biomass and
visible region particularly the red region. To
study the structure of the vegetation surface, a
plot of near-infrared reflectance versus red re-
flectance (spectral feature space diagram) was
used. At the end of the dry season, in semi-arid
areas, bidirectional reflectance values, which are
the values of a calibrated reflectance using the
sun irradiance geometry function and sensor
viewing geometry function, occupy a condensed
envelope in spectral space. The pure bush, grass
and soil samples lie along a brightness line,
which means the red reflectance is equal to the
near-infrared reflectance for pure bush, grass
and soil samples (Fig. 3). This shows the inabil-
ity of the multispectral data to characterize the
vegetation structure. The limited dimensionality
means that differences in reflectance between
surface component (i.e. grass, bush and soil) are
mainly restricted to changes in overall bright-
ness (Trodd and Dougill, 1998).
The disability to provide information on veg-

etation structure from images acquired during
the dry season has a number of important im-
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Figure 1. A) Effect of increasing the fraction of litter in a
grassland canopy from 0% to 100% in simulated canopy re-
flectance. B) First derivative spectra coinciding with panel
A (from Asner, 1998).

  

Figure 2. Comparison of green vegetation (GV), nonphoto-
synthetic vegetation (NPV) and creosote canopy spectra.
The best fit line is the optical linear least-squares mixture
of GV and NPV to match the creosote spectrum. The resid-
ual of this mixture (residual = creosote canopy – best fit)
is given in the bottom panel (from Okin and Robert, 2004).



plications regarding the role of satellite imagery
in increasing our understanding of vegetation
changes in semiarid areas. Particularly, it high-
lights on the need for long-term ground-based
monitoring of changes in vegetation character-
istics and data from new satellite sensors in or-
der to help in developing different reflectance
models and images analysis for the vegetation
community in arid an semi-arid area (Ringrose
et al., 1989). 

2.2 Anomalies in the arrangement of elements
within the canopy 

Most types of dryland vegetation do not differ
enough from one another to allow discernment
of vegetation types by optical remote sensing
(Okin et al., 2001). The within-species variation
makes the problem worse as the spectral vari-
ability within a species can be greater than the
variability between species (Franklin et al.,
1993). In order to understand the above men-
tioned concept, the complication of vegetation
community structure and inter-canopy shading
are discussed. 
Trodd and Dougill (1998) stated that as vari-

ations in the relative proportions of bush and
grass cover in semiarid zones in Africa are like-
ly to change the composite reflectance, it is ap-
parent that the relationship between vegetation
community structure and reflectance is ambigu-
ous. In dryland vegetation community the re-
duction in reflectance can be due to an increase

in vegetation cover and/or inter-canopy shading
by bush canopies. Unfortunately, the two effects
are not distinguishable and therefore, the rela-
tionship between vegetation community struc-
ture and reflectance cannot be inverted and
used to estimate variations in vegetation struc-
ture (Trodd and Dougill, 1998).
Another important aspect in vegetation

community structure in dryland is the possibil-
ity of the estimation of the percentage of non-
photosynthetic vegetation (NPV) using remote
sensing. NPV whether in the form of dead
shrubs or leafless drought-deciduous plants,
plays an important role in the environment of
dryland regions (Asner, 1998). It is useful in re-
ducing wind and water erosion by contributing
to the density of physical obstacles and total
surface cover which protect the surface from
erosion. Both wind and water erosion occur
when surface cover is below approximately 15%
(Wiggs et al., 1995). The difficulty is to deter-
mine the percentage of NPV and vegetation
cover using remote sensing. Many common
methods of estimating vegetation cover, such as
vegetation indexes, are insensitive to the pres-
ence of NPV. They may not be useful to esti-
mate the total cover in situations where NPV is
a significant component of the surface cover
(Asner, 2004).

2.3 Optical interferences from the environment
around the canopy (atmosphere and soil)

The most important source of energy is the sun.
Before the sun’s energy reaches the Earth’s sur-
face, three fundamental interactions in the at-
mosphere are possible: absorption, transmission
or scattering. The most efficient absorbers of so-
lar radiation in the atmosphere are ozone, wa-
ter and carbon dioxide. Atmospheric scattering
occurs when the particles or gaseous molecules
present in the atmosphere cause the electro-
magnetic waves to be redirected from their orig-
inal path (Fig. 4). 
Simple single scattering is represented as the

product of the reflectance of an object times the
intensity of the incoming radiation and is called
linear mixing. For a given wavelength (λ), we have:

Ir(λ) = p(λ)Ii(λ) [1]

where Ir(λ) is the intensity of the reflected light,
Ii(λ) is the intensity of the incident light, and
p(λ) is the reflectance spectrum of the object. 
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Figure 3. Schematic representation of landscape components
in spectral feature space showing the distribution of all pix-
els in a scene in red and near-infrared multispectural space;
the white area envelopes reflectance values in dry season
and the white+gray area envelopes reflectance values in the
wet season (from Trodd and Dougill, 1998).



Multiple scattering or nonlinear mixing oc-
curs when photons interact with more than one
type of object on the Earth before returning to
the sensor (Asner, 2004) and can be defined as
follows:

Ir(λ) = p1(λ)p2(λ)Ii(λ) [2]

where p1(λ) is the reflectance spectrum of the
first object and p2(λ) is the reflectance spectrum
of the second object. 
In the arid and semiarid areas where bright

soils often underlie vegetation with open
canopies, the reflected light is highly affected by
this type of multiple scattering. Therefore, cor-
relations of reflected near-infrared radiation
with LAI of open canopies of dryland shrubs
are poor (Hurcom and Harrison, 1998). Also, in
the case of leaf-to-leaf scattering and by refer-
ring to the definition of scattering (redirection
of the reflectance not reduction), vegetation
spectrum in the near-infrared is nonlinearly ac-
centuated. In this case, there is more energy in
the near-infrared, therefore, nonlinear mixing is
likely to lead to an overestimation of green veg-
etation cover and an underestimation of shade
(Roberts et al., 1993).
In soil, the spectral composition of reflected

and emitted energy primarily depends on the
biogeochemical (mineral and organic) con-
stituents, optical geometric scattering (particle
size, aspect, roughness) and surface moisture
(Huete, 2004). Vegetation cover is well corre-
lated with the presence or absence of soil or-
ganic matter. Soils in dryland ecosystem areas
tend to be bright and mineralogically heteroge-

neous because of their low organic matter,
which tends to mask the spectral contribution
of vegetation in individual pixels (Huete and
Jackson, 1987). 

3. Techniques used in optical remote sensing in
dryland ecosystems

Since the launch of the first Earth Resource
Technology Satellite (ERTS) on July 23, 1972,
the analysis of data has advanced from simple
visual observation to sophisticated interpreta-
tions based on first principles of spectroscopy
and electromagnetic radiation (Ustin et al.,
2004). Most remote sensing in arid regions has
concentrated on optical remote sensing tech-
niques which use data from sensors that collect
radiation in the reflected solar spectrum. Two
approaches are usually followed: a) calculation
of vegetation indices; b) image classification.

3.1 The calculation of vegetation indices

Vegetation indices, reviewed by Jackson et al.
(1983), Tueller and Oleson (1989) and others,
are generally based on ratios of the radiance in
the red and infrared spectral bands, chosen to
maximize the reflectance contrasts between veg-
etation and other materials. The Normalized
Difference Vegetation Index (NDVI) has been
most commonly used to map spatial and tem-
poral variation in vegetation (Tucker, 1979). The
NDVI is a normalized ratio of NIR and red
bands:

PNIR – PredNDVI = ––––––––––––––––– [3]
PNIR + Pred

where PNIR and Pred are the surface bidirectional
reflectance factors.
NDVI is sensitive to pixel-level changes in

greenness and fraction of photosynthetically ac-
tive radiation absorbed, but it is not differen-
tially sensitive to change in vegetation cover
versus vegetation condition (i.e. the vigour, pho-
tosynthetic capacity or stress of vegetation
canopy or cluster). This means that when an
NDVI change occurs, it cannot be readily de-
termined whether or not it was caused by al-
tered vegetation cover or condition of cover.
Moreover, NDVI has only limited success in
providing accurate estimates of shrubland cov-
er in arid regions and limited utility in the arid
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ecosystem. These facts are due to spectral vari-
ability of background materials such as soil and
surface litter and the strength and variation of
soil spectral albedo (i.e. a pixel may contain re-
flectance both from vegetation and soil), which
causes nonlinearity in the relationship between
NDVI and vegetation characteristics (Asner,
2004; Huete, 1988; Huete et al., 1992). 
Huete (1988) and Huete et al. (1992) sug-

gested the Soil Adjusted Vegetation Index
(SAVI). They introduce a soil calibration factor,
L, to the NDVI:

(1+L)(PNIR – Pred)SAVI = –––––––––––––––––––––––––– [4]
PNIR + Pred + L

where L is a soil calibration factor (0-1). Com-
pared to NDVI, SAVI allows to minimize soil
background influences. 
Regarding the relation between the vegeta-

tion indexes and NPV, the role of NPV on ND-
VI and SAVI was considered by Van Leeuwen
and Huete (1996). The significant impact of
NPV on these vegetation indexes was demon-
strated, but it was so variable as to prevent the
formulation of a single correction algorithm.
Certainly, the variability of NDVI of the surface
NPV is enormous, and NPV rarely has NDVI
values close to zero (Fig. 5). Therefore, NDVI is
difficult to be corrected for instability and ubiq-
uity of NPV surface cover in dryland regions.
Due to all these limitations, at the moment, op-
erational guidelines to choose suitable vegeta-
tion indices are still lacking. 

3.2 Image classification

Image classification usually relies on statistical
methods including maximum-likelihood, clus-
tering and discrimination analysis (Haralick and
Fu, 1983) and methods based on principal com-
ponents analysis (PCA) (Crist and Cicone,
1984). The aim of image classification is to link
image spectra to dominant components in the
image captured by the satellite (scene) or a
characteristic mixture of components. It is as-
sumed that spectrally similar data will themati-
cally describe similar elements within a scene.
It is also assumed that for each pixel there is
dominant scene component, or at least a unique
and identifiable suite of components that are
present in distinctive proportions (Smith et al.,
1990a).

PCA is used to identify a change in hetero-
geneity. To have an accurate measurement,
when using this method, the pixel size must be
smaller than the scale of variability of at least
one of the principle landscape elements (grass-
lands or shrublands). If the pixel size is greater
than the scale of variability, the differences be-
tween landscape elements will average out sub-
pixels and spatial information is lost. If it is sig-
nificantly smaller than the scale of heterogene-
ity, PCA can be used to examine the distribu-
tion of vegetation or soil in a landscape (Phinn
et al., 1996).
Spectral mixture analysis (SMA) is a widely

used method to unmix the soil-plant canopy
measurements into the respective soil, vegeta-
tion and NPV single contributions (Smith et al.,
1990a). The spectral response in remote sensing
from open canopies is a function of the number
and type of reflecting components, their optical
properties and relative proportions (Adams et
al., 1995). 
SMA generally involves three steps: 1) as-

sessment of dimensionality or number of unique
reflecting materials in a landscape to get the end
members; 2) identification of the physical na-
ture of each of the landscape components or
endmembers within a pixel; 3) determination of
the amounts of each component in each pixel.
The basic SMA equation is:

RP(λ) = Σ
n

i=1
fiRi (λ) + ε(λ) [5]
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Figure 5. Histogram of NDVI values for nonphotosynthet-
ic vegetation (NPV) collected across a broad range of arid
and semiarid ecosystems (n = 972) (from Asner, 2004).



where RP(λ) is the apparent surface reflectance
of a pixel in an image, fi are the weighting 
coefficients (Σ

n

i=1
fi = 1) interpreted as fractions

of the pixel made up of the endmember i = 1,2
…n, Ri(λ) are the reflectance spectra of spectral
endmembers in an n-endmember model and
ε(λ) is the difference between the actual and
modelled reflectance.
fi represents the best fit coefficient that min-

imizes RMS error (least-squares estimation)
given by the following equation:

[6]

where εj is the error term for each of the m
spectral bands considered.
SMA transforms radiation data into frac-

tions of a few dominant endmembers spectra
that correspond to scene components. Fraction
images illustrate the mixing proportions of these
endmembers spectra and therefore, via calibra-
tion to field data, the mixing proportions of the
scene components can be depicted (Adams et
al., 1986; Smith et al., 1985). SMA differs sig-
nificantly from statistical classification in a num-
ber of ways, most significantly in the small num-
ber of endmembers compared to the potential-
ly large number of thematic classes required to
describe a scene with a statistical approach. In-
deed, SMA separates the spectral contribution
of these intrinsic scene components from shad-
ow and other effects of illumination. This ap-
proach is particularly useful for measuring veg-
etation cover, especially in dryland regions
where the proportions of vegetation and soil
may vary significantly over a short distance
(Smith et al., 1990a). Spectral mixture models
are useful in a variety of applications, including
biogeochemical studies, leaf water content, land
degradation, land cover conversions, fuelwood
assessment and soil and vegetation mapping
(Huete, 2004). 
Endmembers spectra can be measured in the

laboratory, in the field, or from the image itself.
Some SMA approaches use endmembers spec-
tra derived from the image (e.g. Wessman et al.,
1997; Elmore et al., 2000), whereas others em-

ploy libraries of endmembers spectra, which are
the empirical signature libraries (e.g. Smith et
al., 1990a, b; Roberts et al., 1998). Although in
drylands it is exceedingly difficult to locate im-
age pixels containing 100% cover of each ap-
propriate endmember, Bateson and Curtiss
(1996) and Bateson et al. (2000) generated SMA
model using PCA to explore image data in mul-
tiple dimensions. The technique allows the user
to select endmember spectra based on inherent
spectral variability of the image data without re-
quiring homogeneous pixels of each endmem-
ber. Empirical signature libraries have been
used widely, despite the recognition that li-
braries cannot easily capture the full range of
endmember variability as found in nature (As-
ner, 2004). Indeed, it is unlikely and impractical
that the spectral signature of the world’s domi-
nant vegetation could be collected given the
tens of thousands of species that it would be
necessary to identify, and when the range of
possible phenological conditions is included, the
method becomes impossible. However, the pos-
sibility that species and/or communities could
be identified by a limited suite of biochemical
and architectural characteristics permits new ap-
proaches to characterization of land cover prop-
erties (Ustin et al., 2004).
Another problem related to the application

of SMA is nonlinear mixing, which can hinder
the SMA applications (Roberts et al., 1993;
Ray and Murray, 1996). However, the impor-
tance of the effect is not widely recognised
since other studies (Villeneuve et al., 1998; Qin
and Gerstl, 2000) showed that nonlinear mix-
ing is a secondary feature. Moreover, Ustin et
al. (1986) stated that the role of nonlinear mix-
ing in determining the spectral reflectance
variation of an ecosystem is wavelength de-
pendent.
The performance of a spectral mixture

model was compared against NDVI for map-
ping green canopy cover in semi-arid environ-
ment using thematic mapper (TM) data by El-
more et al. (2000) (Fig. 6). NDVI was loosely
correlated with green cover but a marked in-
crease in performance was obtained when uti-
lizing the full potential of TM data via spectral
mixture analysis (Elmore et al., 2000). Results
showed that SMA was able to determine the
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correct sense of change in percentage live cov-
er and give precise estimates of the magnitude
of that change. 

4. Conclusion

Aerial and space remote sensing provide valuable
tools for desertification studies, although they
must be combined with ground-collected data.
From the above review, it is clear that the varia-
tion of the spectral reflectance of vegetation in
arid and semiarid areas changes with the vegeta-
tion structure and surrounding environment. To
improve our skills in the interpretation of optical
remote sensing data in dry ecosystem areas we
should increase our understanding of components
of these areas (vegetation structure, soil and at-
mosphere) and develop the techniques of data in-
terpretation. Moreover, the empirical signature li-
braries should be developed according to regions
and environments. The combination of remote
sensing and ground-collected data can then pro-
vide the basis for the assessment of desertification. 
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