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Abstract
Agricultural fields naturally have within-field variations that may cause spatial variability in crop yields. Delineat-
ing a field into a few management zones (MZ) is therefore a practical management approach for precision agri-
culture. In this study, some soil properties (clay content, organic matter content and water content measured at dif-
ferent dates) and a multivariate geostatistical approach were used to delineate management zones. The temporal
stability of soil water content spatial patterns may be an additional approach in delineating management zones.
The present study was conducted on a 120000 m2 durum wheat field in Southern Italy, where soil properties and
soil water content were measured at different times over three crop seasons (2005-06, 2006-07, and 2007-08) at 100
locations.
The multivariate spatial and temporal data were analysed by Factor Kriging Analysis (FKA). All simple and cross
model variograms were calculated by fitting a linear model of coregionalization including the nugget effect and two
spatial structures at shorter (70 m) and longer range (500 m). The application of factor kriging allowed us to iden-
tify one regionalized factor at longer scale and to partition the field from the point of view of temporal stability of
soil water content, into contiguous zones to be submitted to site-specific management. The method showed a great
flexibility to combine data from several sources in the delineation of management zones.

Key-words: factor kriging, management zones, multivariate geostatistics, precision agriculture.

Introduction

Precision agriculture (site-specific crop man-
agement) is aimed at managing soil spatial vari-
ability to supply actual requirements of a spe-
cific soil and crop to parts of fields rather than
average needs to whole fields (Doerge, 1999;
Mzuku et al., 2005). Site-specific crop manage-
ment requires to delineate management zones
(MZ) which are defined as homogeneous sub-
field regions that have similar yield limiting fac-
tors or similar attributes affecting yield (e.g.
topography, soil nutrient test levels) (Doerge,
1999; Khosla and Shaver, 2001; Fridgen et al.,
2004; Basso et al., 2007). Determination of these

sub-field areas is difficult due to the interactions
among several biotic, abiotic and climate factors
that affect crop yield. Different approaches have
been developed for site-specific management
zone delineation: topography and soil proper-
ties, including soil survey maps (Carr et al.,
1991) and soil sampling (Mulla, 1991); landscape
factors obtained from digital elevation models
(DEM) (McCann et al., 1996; Lark, 1998; Nolan
et al., 2000), aerial photographs of bare soil
(Fleming et al., 2000), remote sensing images
(Bhatti et al., 1991; Moulin et al., 1998), inva-
sive soil sampling (Mulla, 1991) and non-inva-
sive soil sampling using electrical conductivity
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(Johnson et al., 2003; Castrignanò et al., 2006).
Therefore, combining several types of data (soil,
landscape, crop, yield and multiple remote sens-
ing images) is supposed to partly compensate
the weakness of the approaches using a single
source of information and, above all, to produce
more stable management zones.

It is well known that soil water in a field
varies over time and location (Starr, 2005; Gu-
ber et al., 2008) and that when a field is re-
peatedly surveyed for soil water content, loca-
tions can identified where soil water contents
are either consistently larger or consistently less
than the study area average (Vachaud et al.,
1985; Kachanoski and De Jong, 1988; Jaynes and
Hunsaker, 1989; Zhai et al., 1990; Goovaerts and
Chiang, 1993; Comegna and Basile, 1994; Tomer
and Anderson, 1995; Pires da Silva et al., 2001;
Guber et al., 2008). This phenomenon has been
called temporal stability (Vachaud et al., 1985),
temporal persistence (Kachanoski and de Jong,
1988), or rank stability (Tallon and Si, 2003) in
soil water content spatial patterns. The stable
pattern of spatial variability has been correlat-
ed with relatively stable properties as topogra-
phy and soil particle class (Starr, 2005). Vachaud
et al. (1985) pointed out to the role of soil par-
ticle size in explaining soil water temporal sta-
bility.

The temporal stability of soil water content
spatial patterns may be an additional approach
in delineating management zones that has re-
ceived little attention in literature (Starr, 2005).

Geostatistical methods (Matheron, 1970) can
treat soil properties (i.e., water content, particle
size, organic matter content) as continua in a
joint attribute and geographical space. Each at-
tribute is considered as a random regionalized
variable, varying continuously, whose spatial
variation is described by a covariance function.
In particular a multivariate geostatistical ap-
proach, based on Principal Component Analy-
sis (PCA) and called factor kriging (Matheron,
1982), uses the information coming from both
relationships among variables and spatial de-
pendence between observations to subdivide an
agricultural field into more homogeneous units,
with respect to soil physical, chemical and hy-
draulic properties (Castrignanò et al., 2000).
Moreover, some factors that affect crop re-
sponse are likely to have a short-range action,
whereas others operate at longer distances,

therefore delineation of potential management
zones is expected to be scale-dependent.

The main objective of this paper was to pro-
pose a method for delineating potential man-
agement zones based on some soil properties
(clay content, organic matter content and water
content measured at different dates) and a mul-
tivariate geostatistical approach. The proposed
method produces a continuous scale-dependent
classification of the field by combining classical
PCA with geostatistics.

Materials and methods

Study site

The study was carried out in the experimental
farm of the CRA-Experimental Center for the
Cereals, located near Foggia (41° 27’ N, 15° 36’
E, 90 m above sea level), south-eastern Italy. A
field trial on rainfed durum wheat (Figure 1)
was carried out on a 120000-m2 field cropped to
durum wheat (Triticum durum Desf.). The soil
is a deep, silty-clay Vertisol of alluvial origin,
classified as fine, mesic, Typic, Chromoxerert
(Soil Survey Staff, 1999). The climate is Mediter-
ranean, characterised by hot and dry summers
and rainfall concentrated mostly in the winter
months.

Sampling scheme and data

One hundred georeferenced locations (Fig. 1)
were selected so that they evenly covered the
field by using a modified version of spatial sim-
ulated annealing (Castrignanò et al., 2008). The
total number of samples was dictated by finan-
cial constraints and considerations on estima-
tion precision: a rate of approximately 10 sam-
ples per 10000 m2 was deemed as a good trade-
off. The soil samples were collected at the 100
georeferenced locations within the field and
sand, silt, clay, organic matter contents (%) were
determined. Sand, silt and clay contents were
determined by the pipette method (Pagliai,
1997), while organic matter content by Walkley
Black method (Violante, 2000). In this study we
used only clay and organic matter contents.

In the same 100 points, volumetric soil wa-
ter contents were measured at nine dates in
three crop seasons (2005-2006, 2006-2007, 2007-
2008) with a Time Domain Reflectometer, TDR
(TRASE Systems, Soilmoisture Equipment
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Corp., Santa Barbara, CA). Detailed descrip-
tions of TDR principle, technique and design
can be found in Topp et al. (1980), Topp and
Davis (1985), Dalton and van Genuchten
(1986), Zegelin et al. (1992), Cassel et al. (1994).
The probe consisted of two parallel 6-mm thick
and 0.15-m long stainless steel rods.

From soil water content data the standard-
ized relative difference (δij) was computed ac-
cording to Vachaud et al. (1985) equation:

∆ij
δij = –––– (1)

wavg

where ∆ij is the difference between the water
content at location i (i = 1, ..., 100) and the field
average water content wavg at sampling date j (j
= 1, ..., 9). Negative values of δij correspond to
the drier spots, while the positive ones to the
wetter spots. The values of δij equal or very close
to zero represent those zones whose water con-

tents did not vary greatly over time, conserving
a value close to the field average at the sam-
pling date.

Geostatistical methods

In Geostatistics each measured value at a set of
locations is interpreted as a particular realiza-
tion or outcome of a random variable. For a de-
tailed presentation of the theory of geostatistics,
interested readers should refer to texts such as
Chilès and Delfiner (1999), Wackernagel (2003),
Webster and Oliver (2007), among others.

Multi-Gaussian approach. Even if ordinary cok-
riging does not require the data to follow a nor-
mal distribution, variogram modelling is sensi-
tive to strong departures from normality, be-
cause a few exceptionally large values may con-
tribute to many very large squared differences.
In this scope, to produce the map of the vari-
ables we used multi-Gaussian cokriging. It is
based on a multi-Gaussian model and requires
a prior Gaussian transformation of the initial at-
tribute into a Gaussian-shaped variable with ze-
ro mean and unit variance. Such a procedure is
known as Gaussian anamorphosis (Chilès and
Delfiner, 1999; Wackernagel, 2003) and it is a
mathematical function which transforms a vari-
able with a Gaussian distribution into a new
variable with any distribution. The Gaussian
anamorphosis can be achieved using an expan-
sion into Hermite polynomials Hi(Y) (Wacker-
nagel, 2003) restricted to a finite number of
terms.

Multivariate geostatistical approach. The multi-
variate spatial data were analysed by cokriging
and Factor Kriging Analysis (FKA,) which is a
geostatistical method developed by Matheron
(1982). The theory underlying FKA has been
described in many papers (Goovaerts, 1992;
Goovaerts and Webster, 1994; Castrignanò et al.,
2000; Wackernagel, 2003; Webster and Oliver,
2007). The approach consists of decomposing
the set of original second-order random sta-
tionary variables {Zi(xα), i = 1,…, p; α = 1,…, n}
into a set of reciprocally orthogonal regional-
ized factors {Yu

v (x), ν = 1,…, p; u = 1,…, Ns}
where NS is the number of spatial scales,
through transformation coefficients au

iv(loadings
components score) combining the spatial with
the multivariate decomposition:
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Figure 1. Sampling locations.
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NS   p

Zi (xα) = Σ Σ au
iv Y

u
v (x) (2)

u=1 v=1

The three basic steps of FKA are the fol-
lowing:
1) modelling the coregionalization of the set of

variables, using the so called Linear Model
of Coregionalization (LMC);

2) analysing the correlation structure between
the variables, by applying Principal Compo-
nent Analysis (PCA) at each spatial scale;

3) cokriging specific factors at each character-
istic scale and mapping them.

Linear Model of Coregionalization (LMC). The
LMC, developed by Journel and Huijbregts
(1978), considers all the studied variables as the
result of the same independent physical process-
es, acting at different spatial scales. The p(p+1)/2
simple and cross variograms of the p variables
are modelled by a linear combination of NS
standardized variograms to unit sill gu(h). Using
the matrix notation, the LMC can be written as:

NS

Ã(h) = Σ Bu gu (h) (3)
u=1

where Ã(h) = [γij (h)] is a symmetric matrix of
order p × p, whose diagonal and non diagonal
elements represent simple and cross variograms
for lag h; Bu = [bu

ij] is called coregionalization ma-
trix and it is a symmetric semi-definite matrix
of order n × n with real elements bu

ij at a spe-
cific spatial scale u. The model is authorized if
the functions gu(h) are authorized variogram
models. In the LMC the spatial behaviour of the
variable is supposed resulting from superimpo-
sition of different independent processes work-
ing at different spatial scales. These processes
may affect the behaviour of experimental semi-
variograms, which can be modelled by a set of
functions gu(h). Fitting of LMC is performed by
weighed least-squares approximation under the
constraint of positive semi-definiteness of the
Bu, using the iterative procedures developed by
Goulard and Voltz (1992). The best model was
chosen, as suggested by Goulard and Voltz
(1992).

The goodness of estimation approach is eval-
uated with a cross-validation test by calculating:
1) mean error, which proves the unbiasedness
of estimate if its value is close to 0, and 2) the
variance of the standardized error by kriging

standard deviation. If the model for the vari-
ogram is accurate, the mean squared error
should equal the kriging variance and then the
variance of the standardized error should be
close to 1.

The transformed data are estimated at all
unsampled locations using ordinary cokriging.
Finally, the estimates are back transformed to
the raw data through the mathematical model
calculated in Gaussian Anamorphosis.

Regionalized Principal components Analysis.
Regionalized principal component analysis con-
sists in decomposing each coregionalization ma-
trix into eigenvalues and eigenvectors matrices
(Wackernagel, 2003).

The transformation coefficients au
iv corre-

spond to the covariances between the original
variables and the principal component, called
regionalized factors, at a given spatial scale.

Cokriging and mapping of Regionalized Factors.
Regionalized principal component analysis con-
sists in decomposing each coregionalization ma-
trix Bu into eigenvalues and eigenvectors matri-
ces (Wackernagel, 2003):

Bu = Qu Ëu QuT = Qu   Ëu   Qu   Ëu   = AuAuT (4)

where Qu is the matrix of eigenvectors and Ëu

is the diagonal matrix of eigenvalues for each
spatial scale u; Au = Qu Ëu is the matrix of or-
der n × n of the transformation coefficients au

iv .
The transformation coefficients au

iv in the matrix
Au correspond to the covariances between the
original variables Zi(x) and the regionalized fac-
tors Yu

v(x). The behaviour and relationships
among variables at different spatial scales can
be illustrated by mapping the regionalized fac-
tors  estimated by cokriging (Castrignanò et al.,
2000). The cokriging systems have been widely
described by Wackernagel (2003).

All statistical and geostatistical analyses
were done by using the software package
ISATIS®, release 9.0 (Geovariances, 2009).

Results and discussion

Basic statistics of clay, organic matter (OM), and
soil water content for each date of measurement
are reported in Table 1. Soil clay content varied
from 8.50 to 50.03 % and its distribution was
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symmetrical and the χ2 test showed that the hy-
pothesis of normality cannot be refused at a
probability level greater than 0.05 (experimen-
tal χ2 = 14.35). The OM content varied from 1.51
to 2.30 % and the results of the χ2 test showed
that the hypothesis of normality cannot be ac-
cepted at a probability level greater than 0.10
(experimental χ2 = 29.40).

The soil water content mean values were
greatly affected by the rainfall pattern decreas-
ing from February to May. Only in 2007 the
mean soil water content value in May was high-
er than the one in April as consequence of pre-
cipitation occurred in May 2007. Soil water con-
tent distributions were generally symmetric and
except 3 measurement dates (17-02-2006, 14-05-
2007, and 24-04-2008), the χ2 test showed that
the hypothesis of normality cannot be refused
at a probability level greater than 0.05.

From the soil water content data, the stan-
dardized relative differences, δij, corresponding
to the nine sampling dates were computed us-
ing Eq. (1). Due to the diversity of measure-
ment units and because multi-Gaussian ap-
proach requires a multi-Gaussian framework, all
the variables were normalized and standardized
to mean 0 and variance 1, by using Hermite
polynomial expansions restricted to the first 30
elements.

The variographic analysis allowed to com-
pute the experimental simple and cross-vari-
ograms of clay, organic matter contents, and the
standardized relative differences. No relevant
anisotropy was observed in the variogram maps
(not shown) and the experimental variograms
looked upper bounded. Therefore, an isotropic
LMC was fitted to experimental simple and
cross-variograms including three basic spatial

structures: (1) a nugget effect; (2) a spherical
model (Webster and Oliver, 2007) with range of
70 m and (3) a spherical model with range of
500 m. Figure 2 shows some of auto- and cross-
variograms of the Gaussian variables of Clay
and OM content, and the Gaussian differences
mean standardized. Most of variation was errat-
ic and not spatially correlated. Indeed, the nugget
component was also large; this comprises main-
ly variation at scales smaller than 35 m (the av-
erage sampling interval) and to a lesser extent
measurement error. To resolve some of the
nugget component of the variation, further sam-
pling on a finer spatial scale would be needed.

The appropriateness of the LMC was evalu-
ated with a cross-validation test by calculating
mean error and the variance of standardized er-
ror, which were quite close to 0 (varying be-
tween -0.026 and 0.028) and 1 (varying between
0.90 and 1.22), respectively.

The spatial maps of the eleven variables
were obtained by cokriging on a 1m × 1m square
grid. Figure 3 show the maps of clay, OM con-
tent, and the mean of the standardized relative
differences. From an inspection of the map, it is
possible identify the wettest zones (positive val-
ues) in the southern part of the field and in a
little spot in the northern part. The driest zones
(negative values) are located in the centre-
northern part of the field. There are two large
zones extending across the centre-northern and
centre-southern parts of the field, where the wa-
ter contents generally matched the average val-
ue of the field (values equal or very close to ze-
ro). The driest zones correspond to presence of
coarse sand (map not shown) and from the map
of the coefficient of variation of the spatial-tem-
poral soil water content, it can identify the dri-
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Table 1. Basic statistics of clay (%), organic matter (%), and soil water content, θ, (m3 m-3) for each date of measurement.

Minimum Mean Maximum Standard Deviation CV Skewness Kurtosis

Clay 8.500 27.53 50.03 07.44 0.27 0.22 3.19
OM 1.510 01.88 02.30 00.14 0.08 0.19 3.26
θ - 170206 0.277 0.431 0.548 0.053 0.12 -0.67 3.13
θ - 090506 0.146 0.215 0.306 0.039 0.18 0.40 2.59
θ - 300506 0.112 0.147 0.191 0.014 0.10 0.09 3.06
θ - 120207 0.144 0.262 0.369 0.041 0.16 0.43 3.56
θ - 060407 0.025 0.118 0.250 0.052 0.45 0.45 2.45
θ - 140507 0.093 0.156 0.261 0.027 0.18 0.48 4.58
θ - 100408 0.197 0.333 0.548 0.048 0.14 0.96 7.80
θ - 240408 0.155 0.244 0.324 0.042 0.17 -0.18 1.92
θ - 090508 0.048 0.170 0.275 0.046 0.27 -0.38 3.07
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est zones with the higher values of CV of soil
water content. The wettest zones correspond to
the smaller values of CV. With a few exceptions,
the smaller values of OM content correspond in
a way to the driest zones.

To aggregate and summarize the joint vari-
ability in the clay, OM, and relative differences
(δij), standardized PCA was performed at the
basic spatial scales. A summary of the results
obtained is presented in Table 2. The loadings
(coefficients of transformation of Eq. 2) for
each variable in relation to the principal com-
ponents (regionalized factors) are given as well
as the eigenvalues and the percentage of ex-
plained variance for each of the components.
The sum of the eigenvalues at each spatial scale
gives an estimate of the variance at that scale
(Tab. 2). The nugget was about 53% of total
variance (12.07), while the contribution of the
shorter range component (70 m) of variation to
the total variance was 25% and the contribu-

tion of the longer range component (500 m) was
22%. Moreover, the matrix of eigenvectors (re-
gionalized factors) contains the information if
some meaning can be attached to the principal
components. The elements of an eigenvector
represent the contribution of the original vari-
ate to that component. An element of an eigen-
vector with a value near 1 means that the orig-
inal variate makes a large contribution to that
component. Conversely, if an element of an
eigenvector is near 0 the contribution to that
component is small. Therefore, by examining the
eigenvectors it may be possible to give the prin-
cipal components a physical interpretation.
However, the principal components (PCs) are
no more than mathematical constructs, and they
have no direct physical meaning. Therefore, an
interpretation is by no means assured. In this
scope, we retained the PCs (regionalized fac-
tors) producing eigenvalues greater than one
and omitted the ones corresponding to nugget
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Figure 2. Some auto- and cross-variograms of the Gaussian variables of Clay and OM content, and the Gaussian
differences mean standardized. The experimental values are the plotted points and the solid lines are of the mod-
el of coregionalization. The dash-dotted lines are the hull of perfect correlation and the dashed lines are the ex-
perimental variances.
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Figure 3. Maps of the clay, OM
content, and the mean of the
standardized relative differences
produced using cokriging. The
map of coefficient of variation of
soil water content data is also re-
ported.

Table 2. Decomposition of the components (regionalized factors). The eigenvalues and the percentage of variance accounted
for at each spatial scale are also given.

Clay OM δij δij δij δij δij δij δij δij δij Eigen- Variance
170206 090506 300506 120207 060407 140507 100408 240408 090508 values Percentage

a) Nugget effect
Factor 1 0.0182 0.4028 -0.4163 0.1098 0.4948 0.5686 0.0151 -0.0668 -0.0716 0.0849 -0.2589 1.3713 21.46
Factor 2 -0.1206 0.0629 0.4428 -0.0755 0.0398 0.3414 0.1356 -0.3139 0.5679 0.4074 0.2370 1.0825 16.94
Factor 3 0.2636 -0.4000 0.0947 0.3265 0.1919 0.3039 -0.1154 0.6036 0.3220 -0.1826 0.1050 0.9681 15.15
Factor 4 -0.5003 0.2134 -0.1706 0.3387 -0.0443 -0.2215 -0.5816 0.1983 0.1712 0.3007 0.1101 0.8720 13.65
Factor 5 0.3655 0.1969 0.5236 0.2567 -0.1795 0.0969 -0.2345 0.0799 -0.3736 0.3542 -0.3459 0.6576 10.29
Factor 6 0.2801 0.1001 -0.0213 0.6267 0.0309 -0.2314 -0.0331 -0.5279 0.2568 -0.3427 -0.0229 0.5619 8.79
Factor 7 -0.2863 -0.0657 0.1247 0.1085 0.1804 -0.3127 0.4108 0.1850 0.2680 0.0870 -0.6882 0.4616 7.22
Factor 8 0.1407 0.4392 -0.0928 0.2717 -0.0995 -0.1716 0.5771 0.3442 -0.0603 0.1940 0.4155 0.3723 5.83
Factor 9 -0.0715 -0.5522 -0.0703 0.2817 0.3922 -0.1075 0.1333 -0.2211 -0.3762 0.4405 0.1951 0.0432 0.68

b) Spherical model (range 70 m)
Factor 1 0.3670 -0.0615 -0.2466 -0.1938 0.4174 -0.4179 -0.1448 0.1103 0.2330 0.5358 0.1996 0.9182 29.86
Factor 2 0.1464 0.574 0.2795 -0.0375 0.4704 -0.1396 -0.2009 -0.1155 -0.2403 -0.4060 0.2292 0.8608 27.99
Factor 3 0.0838 0.3462 0.0259 -0.6092 -0.4577 0.0441 -0.2513 0.1353 0.4395 -0.1236 0.0043 0.6778 22.04
Factor 4 0.3588 0.2674 -0.6364 -0.0123 -0.2018 0.0259 0.4870 -0.1515 -0.1916 -0.1556 0.1791 0.3901 12.69
Factor 5 -0.3146 -0.249 -0.2281 -0.3096 -0.0958 0.0882 -0.4014 -0.3694 -0.3713 0.0619 0.4847 0.1863 6.06
Factor 6 -0.4111 -0.0495 -0.4812 -0.0836 0.2268 -0.4051 -0.1139 -0.0543 0.1509 -0.3960 -0.4231 0.0421 1.37

b) Spherical model (range 500 m)
Factor 1 0.4246 -0.2399 0.0755 -0.0048 -0.3850 0.1710 -0.4424 -0.3496 0.3258 0.2798 -0.2768 1.5007 57.63
Factor 2 -0.5609 -0.0376 -0.2505 -0.4625 -0.2929 -0.1086 0.0044 -0.1759 0.4281 -0.2857 -0.1176 0.6107 23.45
Factor 3 0.0313 0.2032 -0.2167 0.4267 -0.0901 -0.1798 -0.0838 -0.3963 0.2551 -0.0806 0.6728 0.4225 16.22
Factor 4 0.2916 0.1601 -0.4922 -0.2692 -0.3558 -0.1851 0.1089 0.4777 0.0217 0.3730 0.1846 0.0704 2.7
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effect, because mostly affected by measurement
error and variation at a scale smaller than 20 m
(lag), only the first regionalized factor corre-
sponding at long range (500 m) was considered
for the final analysis, accounting for 58% of the
variability at that spatial scale (Tab. 2). The first
regionalized factor, as a new variable, will be the
basis of the management zones delineation.
From the Table 2, clay content has the higher
principal component loading and that reflects
the relative importance of clay content within
the first regionalized factor.

Therefore, to classify this index into MZ, we
preferred to utilise only the scores of the first
factor at long range, because the one at short
range produced a fine partitioning of the field
into too small zones, which cannot actually be
differentially managed by the farmer. The scores
of the index at long range were split into three
classes by using iso-frequency classes. The re-
sultant map, depicting the MZ is shown in Fig-
ure 4. The number of the created management
zones was chosen so the MZ were practically
“manageable” by farmer.

Conclusions

The proposed approach has then led to parti-
tion the field from the point of view of soil
properties, into contiguous zones to be submit-
ted to site-specific management. This study has
indicated that different soil and multi-temporal
properties can be used to delineate agricultural
management zones by adopting a multivariate
geostatistical approach. The method showed a
great flexibility to combine data from several
sources in the delineation of management zones.

However, as spatial and temporal variability
in crop response depends on many factors, in-
cluding weather, genetics, soil and landscape
properties, management practices, stresses, pests
and their dynamic interactions, it is better to use
more variables of different type, combining both
soil-landscape and crop information, to define
more stable MZ. Using this delineation in the
scope of site-site specific farm, would require
additional experimental tests through crop mea-
surements. Moreover, the static concept of MZ
can be inadequate for variable application of
crop inputs as water under variable meteoro-
logical conditions. In this case a better strategy
might be to combine the use of MZ along with
a remote infrared imaging of crop, so that crop
water status can be instantaneously estimated
and then irrigation can be more efficiently 
applied.
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