Low-input cultivation of camelina (Camelina sativa (L.) Crantz) in a Mediterranean semi-arid environment

Submitted: 27 August 2020
Accepted: 30 December 2020
Published: 28 January 2021
Abstract Views: 1171
PDF: 684
HTML: 185
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Highlights
- Camelina showed high adaptability to conservation agriculture practices.
- Seed yield of 1.9 t ha–1 was obtained under reduced tillage and low fertilisation rate.
- High inputs (fertilisation and tillage) determined a 12-d longer crop cycle.
- α-linolenic, erucic and eicosenoic acids were affected by input levels.

 

The cultivation of oil crops for biofuel production has often been accused of not being environmentally sustainable due to the high inputs needed. To explore the effect of reduced input on productive and qualitative traits of camelina (Camelina sativa (L.) Crantz), a trial was carried out over a two-year period. This study analysed two different levels of input: a low input treatment (shallow non-inversion tillage and low fertilisation rate) and a high input treatment (deeper tillage and high fertilisation rate). Camelina was positively, even though to a limited extent, affected by high input treatment as highlighted by the increase in seed yield (from 1.8 to 2.0 t ha–1), crop residues (from 4.8 to 5.2 t ha–1), seed protein content (from 26.5 to 28.9%), seed oil content (from 41.5 to 43.4%) and oil yield (from 0.75 to 0.88 t ha–1). So, from a sustainable point of view, we must consider negligible the effect of high input and satisfactory the performances of camelina in the low input regime. Low input management resulted in satisfactory yields in terms of both quantity and quality, results which were not very different from high input, indicating promising potential for conservation agriculture practices in camelina in a semi-arid environment.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

AOAC, 1990. In: K. Helrich (Ed), Official Methods of Analysis (15th ed.). The Association of Official Analytical Chemists, Inc., Arlington, USA.
Abramovic H, Abram V, 2005. Properties of Camelina sativa oil. Food Technol. Biotechnol. 43:63-70.
Afshar RK, Mohammed YA, Chen C, 2016. Enhanced efficiency nitrogen fertiliser effect on camelina production under conventional and conservation tillage practices. Ind. Crops Prod. 94:783-9. DOI: https://doi.org/10.1016/j.indcrop.2016.09.043
Agegnehu M, Honermeier B, 1997. Effects of seeding rates and nitrogen fertilisation on seed yield, seed quality and yield components of false flax (Camelina sativa Crtz.). Bodenkultur 48:15-21.
Aguirrezábal L, Martre P, Pereyra Irujo G, Izquierdo N, Allard V. 2009. Management and breeding strategies for the improvement of grain and oil quality, pp 387-421 in V. Sadras, D. Calderini (Eds.), Crop physiology. Applications for genetic improvement and agronomy. Vol. 16. Academic Press, San Diego, CA, USA. DOI: https://doi.org/10.1016/B978-0-12-374431-9.00016-5
Berti M, Gesch R, Eynck C, Anderson J, Cermak S. 2016. Camelina uses, genetics, genomics, production, and management. Ind. Crops Prod. 94:690-710. DOI: https://doi.org/10.1016/j.indcrop.2016.09.034
Bronson KF, Hunsaker DJ, Thorp KR, 2019. Nitrogen fertiliser and irrigation effects on seed yield and oil in Camelina. Agron. J. 111:1712-9. DOI: https://doi.org/10.2134/agronj2018.10.0644
Budin JT, Breene WM, Putnam DH, 1995. Some compositional properties of Camelina (Camelina sativa L. Crantz) seeds and oils. J Am Oil Chem Soc 72:309-15. DOI: https://doi.org/10.1007/BF02541088
Campbell MC, Rossi AF, Erskine W, 2013. Camelina (Camelina sativa (L.) Crantz): agronomic potential in Mediterranean environments and diversity for biofuel and food uses. Crop Pasture Sci. 64:388-98. DOI: https://doi.org/10.1071/CP13054
Chen C, Bekkerman A, Afshar KR, Neil K, 2015. Intensification of dryland cropping systems for bio-feedstock production: evaluation of agronomic and economic benefits of Camelina sativa. Ind. Crops Prod. 71:114-21. DOI: https://doi.org/10.1016/j.indcrop.2015.02.065
Cooper J, Baranski M, Stewart G, 2016. Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: a meta-analysis. Agron. Sustain. Dev. 36:22. DOI: https://doi.org/10.1007/s13593-016-0354-1
Fröhlich A, Rice B, 2005. Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind. Crops Prod. 21:25-31. DOI: https://doi.org/10.1016/j.indcrop.2003.12.004
Gesch R, Cermak S, 2011. Sowing date and tillage effects on fall-seeded camelinain the northern Corn Belt. Agron. J. 103:980-7. DOI: https://doi.org/10.2134/agronj2010.0485
Imbrea F, Jurcoane S, Halmajan HV, Duda ML, 2011. Camelina sativa: a new source of vegetal oils. Rom. Biotechnol. Lett. 16:6263-70.
Iskandarov U, Kim HJ, Cahoon E, 2014. Camelina: an emerging oilseed platform for advanced biofuels and bio-based materials. In: McCann M., Buckeridge M., Carpita N. (Eds.), Plants and BioEnergy. Springer-Verlag, New York, USA, pp. 131-40. DOI: https://doi.org/10.1007/978-1-4614-9329-7_8
Jiang Y, Caldwell CD, Falk KC, Lada RR, MacDonald D, 2013. Camelina yield and quality response to combined nitrogen and sulfur. Agron. J. 105:1847-52. DOI: https://doi.org/10.2134/agronj2013.0240
Jankowski KJ, Sokólskia M, Kordan B, 2019. Camelina: Yield and quality response to nitrogen and sulfur fertilisation in Poland. Ind. Crops Prod. 141:111776. DOI: https://doi.org/10.1016/j.indcrop.2019.111776
Leghari SJ, Wahocho NA, Laghari GM, Laghari AH, Bhabham GM, Talpur KH, Bhutto TA, Wahocho SA, Lashari AA, 2016. Role of nitrogen for plant growth and development: a review. Adv. Environ. Biol. 10: 209-18.
Malhi SS, Johnson EN, Hall LM, May WE, Phelps S, Nybo B, 2014. Effect of nitrogen fertiliser application on seed yield, N uptake, and seed quality of Camelina sativa. Can. J. Soil Sci. 94:35-47. DOI: https://doi.org/10.4141/cjss2012-086
Martinelli T, Galasso I, 2011. Phenological growth stages of Camelina sativa according to the extended BBCH scale. Ann. App. Biol. 158:87-94. DOI: https://doi.org/10.1111/j.1744-7348.2010.00444.x
Masella P, Martinelli T, Galasso I, 2014. Agronomic evaluation and phenotypic plasticity of Camelina sativa growing in Lombardia, Italy. Crop Pasture Sci. 65:453-60. DOI: https://doi.org/10.1071/CP14025
Matteo R, D’Avino L, Ramirez-Cando LJ, Pagnotta E, Angelini LG, Spugnoli P, Ugolini L, Foschi L, Lazzeri L, 2020. Camelina (Camelina sativa L. Crantz) under low-input management systems in northern Italy: Yields, chemical characterisation and environmental sustainability. Ital. J. Agron. 15:1519. DOI: https://doi.org/10.4081/ija.2020.1519
Moser BR, 2010. Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope? Lipid Technol. 22:270-3. DOI: https://doi.org/10.1002/lite.201000068
Moser BR, Vaughn SF, 2010. Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra-low-sulfur diesel fuel. Bioresour Technol. 101:646-53. DOI: https://doi.org/10.1016/j.biortech.2009.08.054
Onofri A, 2007. Routine statistical analyses of field experiments by using an Excel extension. pp 93-99 in Proceedings 6th National Conference Italian Biometric Society: La statistica nelle scienze della vita e dell’ambiente, Pisa; Italy.
Pecchia P, Russo R, Brambilla I, Reggiani R, Mapelli S, 2014. Biochemical seed traits of Camelina sativa - An emerging oilseed crop for biofuel: environmental and genetic influences. J. Crop Improv. 28:465-83. DOI: https://doi.org/10.1080/15427528.2014.920758
Pilgeram AL, Sands DC, Boss D, Dale N, Wichman D, Lamb P, Lu C, Barrows R, Kirkpatrick M, Thompson B, Johnson DL, 2007. Camelina sativa, A Montana omega-3 and fuel crop. In: J. Janick and A. Whipkey (Eds.), Issues in new crops and new uses. ASHS Press, Alexandria, VA, USA.
Pittelkow CM, Liang X, Linquist BA, Groenigen KJV, Lee J, Lundy ME, Gestel NV, Six J, Venterea RT, Kessel CV, 2014. Productivity limits and potentials of the principles of conservation agriculture. Nature 517:365-8. DOI: https://doi.org/10.1038/nature13809
Putnam DH, Budin JT, Field LA, Breene WM, 1993. Camelina: a promising low-input oilseed. In: J. Janick and J.E. Simon (Eds.), New crops. Wiley, New York, USA, pp 314-322.
Royo-Esnal A, Valencia-Gredilla F, 2018. Camelina as a rotation crop for weed control in organic farming in a semiarid Mediterranean climate. Agricult. 8:156. DOI: https://doi.org/10.3390/agriculture8100156
Righini D, Zanetti F, Martínez-Force E, Mandrioli M, Gallina Toschi T, Monti A, 2019. Shifting sowing of camelina from spring to autumn enhances the oil quality for bio-based applications in response to temperature and seed carbon stock. Ind. Crops Prod. 137:66-73. DOI: https://doi.org/10.1016/j.indcrop.2019.05.009
Righini D, Zanetti F, Monti A, 2016. The bio-based economy can serve as the springboard for camelina and crambe to quit the limbo. OCL 23:1-9. DOI: https://doi.org/10.1051/ocl/2016021
Rodríguez-Rodríguez MF, Salas JJ, Venegas-Calerón M, Garcés R, Martínez-Force E, 2016. Molecular cloning and characterisation of the genes encoding a microsomal oleate Δ12 desaturase (CsFAD2) and linoleate Δ15 desaturase (CsFAD3) from Camelina sativa. Ind. Crops Prod. 89:405-15. DOI: https://doi.org/10.1016/j.indcrop.2016.05.038
Soane BD, Ball BC, Arvidsson J, Basch G, Moreno F, Roger-Estrade J, 2012. No-till in northern, western and south-western Europe: a review of problems and opportunities for crop production and the environment. Soil Tillage Res. 118:66-87. DOI: https://doi.org/10.1016/j.still.2011.10.015
Solis A, Vidal I, Paulino L, Johnson BL, Berti MT, 2013. Camelina seed yield response to nitrogen, sulfur, and phosphorus fertiliser in South Central Chile. Ind. Crops Prod. 44:132-8. DOI: https://doi.org/10.1016/j.indcrop.2012.11.005
Solomon S, Qin D, Manning M, et al, 2007. Technical Summary. In: Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Stolarski MJ, Krzyżaniak M, Tworkowski J, Załuski D, Kwiatkowski J, Szczukowski S, 2019. Camelina and crambe production - Energy efficiency indices depending on nitrogen fertiliser application. Ind. Crops Prod. 137:386-95. DOI: https://doi.org/10.1016/j.indcrop.2019.05.047
Urbaniak SD, Caldwell CD, Zheljazkov VD, Lada R, Luan L, 2008. The effect of cultivar and applied nitrogen on the performance of Camelina sativa L. in the Maritime Provinces of Canada. Can. J. Plant Sci. 8:111-9. DOI: https://doi.org/10.4141/CJPS07115
Vollmann J, Damboeck A, Eckl A, Schrems H, Ruckenbauer P, 1996. Improvement of Camelina sativa, an underexploited oilseed. In: J. Janick (Ed.), Progress in new crops. ASHS Press, Alexandria, VA, USA, pp. 357-362. DOI: https://doi.org/10.1002/lipi.19970991004
Vollmann J, Moritz T, Kargl C, Baumgartner S, Wagentristl H, 2007. Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Ind. Crops Prod. 26:270-7. DOI: https://doi.org/10.1016/j.indcrop.2007.03.017
Zadernowski R, Budzynski W, Nowak-Polakowska H, Rashed AA, Jankowski K, 1999. Effect of fertilisation on the composition of lipids from false flax (Camelina sativa L. Cr.) and crambe (Crambe abissinica Hochst.). Oilseed Crops (Poland) 20:503-10.
Zanetti F, Eynck C, Christou M, Krzyżaniak M, Righini D, Alexopoulou E, Stolarski MJ, Van Loo EN, Puttick D, Monti A, 2017. Agronomic performance and seed quality attributes of Camelina (Camelina sativa L. Crantz) in multi-environment trials across Europe and Canada. Ind. Crops Prod. 107:602-8. DOI: https://doi.org/10.1016/j.indcrop.2017.06.022
Zanetti F, Gesch RW, Walia MK, Johnson JMF, Monti A, 2020. Winter camelina root characteristics and yield performance under contrasting environmental conditions. Field Crops Res. 252:107794. DOI: https://doi.org/10.1016/j.fcr.2020.107794
Zanetti F, Vamerali T, Mosca G, 2009. Yield and oil variability in modern varieties of high-erucic winter oilseed rape (Brassica napus L. var. oleifera) and Ethiopian mustard (Brassica carinata A. Braun) under reduced agricultural inputs. Ind. Crops Prod. 30:265-70. DOI: https://doi.org/10.1016/j.indcrop.2009.05.002
Zubr J, 1997. Oil-seed crop: Camelina sativa. Ind. Crops Prod. 6:113-9. DOI: https://doi.org/10.1016/S0926-6690(96)00203-8
Zubr J, 2003. Qualitative variation of Camelina sativa seed from different locations. Ind. Crops Prod. 17:161-9. DOI: https://doi.org/10.1016/S0926-6690(02)00091-2
Zubr J, Matthaus B, 2002. Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Ind. Crops Prod. 15:155-62. DOI: https://doi.org/10.1016/S0926-6690(01)00106-6

How to Cite

Avola, G., Sortino, O., & Gresta, F. (2021). Low-input cultivation of camelina (<em>Camelina sativa</em> (L.) Crantz) in a Mediterranean semi-arid environment. Italian Journal of Agronomy, 16(1). https://doi.org/10.4081/ija.2021.1728