Smart fertilizers: what should we mean and where should we go?


- A smart fertilizer allows to control the rate, timing and duration of nutrients release.
- Nanofertilizers are powder or liquid formulations which involve the synthesis, design and use of materials at the nanoscale level.
- Composite fertilizers are formulations containing nutrients mixed or coated with one or more materials that exploit synergy among materials.
- Bioformulations are fertilizers containing active or dormant microorganisms capable to trigger physiological growth responses in plants.
- Limited information is available for smart fertilizers on herbaceous crops in open field conditions.



The current agricultural system faces several challenges, the most important being the ability to feed the increasing world population and mitigate climate change. In this context, the improvement of fertilizers’ agronomic efficiency while reducing their cost and environmental impact is one of the biggest tasks. Available literature shows that many efforts have been made to develop innovative fertilizers defined as "smart fertilizers", for which, different interpretations and definitions have been used. This paper aims to define, classify, and describe the new frontier of the so-called smart fertilizers with a particular focus on field-scale studies on herbaceous species. Most of the analyzed papers associate the "smart" concept to the controlled and/or slow release of nutrients, using both terms as synonymous. Some others broadened the concept, including the controlled release of nutrients to reduce the environmental impact. Based on our critical analysis of the available literature, we conclude that a fertilizer can be considered "smart" whenapplied to the soil, it allows control over the rate, timing, and duration of nutrients release. Our new definition is: ‘Smart fertilizer is any single or composed (sub)nanomaterial, multi-component, and/or bioformulation containing one or more nutrients that, through physical, chemical, and/or biological processes, can adapt the timing of nutrient release to the plant nutrient demand, enhancing the agronomic yields and reducing the environmental impact at sustainable costs when compared to conventional fertilizers’.



PlumX Metrics


Download data is not yet available.


Abalos D, Sanchez-Martin L, Garcia-Torres L, van Groenigen JW, Vallejo A. 2014. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops. Sci. Total Environ. 490:880-888. DOI:

Abd El-Azeim MM, Sherif MA, Hussien MS, Haddad SA. 2020. Temporal impacts of different fertilization systems on soil health under arid conditions of potato monocropping. J. Soil Sci. Plant Nutr. 20:322-334. DOI:

Abdelsalam NR, Fouda MM, Abdel-Megeed A, Ajarem J, Allam AA, El-Naggar ME. 2019. Assessment of silver nanoparticles decorated starch and commercial zinc nanoparticles with respect to their genotoxicity on onion. Int. J. Biol. Macromol 133:1008-1018. DOI:

Adams C, Frantz J, Bugbee B. 2013. Macro‐and micronutrient‐release characteristics of three polymer‐coated fertilizers: Theory and measurements. J. Soil Sci. Plant Nutr. 176:76-88. DOI:

Adhikary S, Mandal N, Rakshit R, Das A, Kumar V, Kumari N, Choudhary SK, Homa, F. 2020. Field evaluation of Zincated nanoclay polymer composite (ZNCPC): Impact on DTPA-extractable Zn, sequential Zn fractions and apparent Zn recovery under rice rhizosphere. Soil Till. Res. 201:104607.

Al-Antary TA, Kahlel A, Ghidan A, Asoufi H. 2020. Effects of nanotechnology liquid fertilizers on fruit set and pods of broad bean (Vicia faba L.). Fresen. Environ. Bull, 29:4794-4798.

Al-Badawi MA. 2008. Use of mycorrhizeae in biodegradation. UAE Guide Magazine, 38:221-230.

Al-Uthery HW, Al-Shami QM. 2019. Impact of fertigation of nano NPK fertilizers, nutrient use efficiency and distribution in soil of potato (Solanum tuberosum L.). Plant Arch. 19:1087-1096.

Amans EB, Slangen JHG. 1994. The effect of controlled-release fertilizer ‘Osmocote’on growth, yield and composition of onion plants. Fert. Res. 37:79-84. DOI:

Ando H, Kakuda KI, Nakayama M, Yokoto KI. 2000. Yield of no-tillage direct-seeded lowland rice as influenced by different sources and application methods of fertilizer nitrogen. Soil Sci. Plant Nutr. 46:105-115. DOI:

Arora NK, Verma M, Mishra J. 2017. Rhizobial bioformulations: past, present and future. In: S. Mehnaz (ed.) Rhizotrophs: Plant growth promotion to bioremediation. Springer, Singapore, pp 69-99.

Arrobas M, Ângelo Rodrigues M. 2013. Agronomic evaluation of a fertilizer with D-CODER technology: a new mechanism for the slow release of nutrients. J. Agr. Sci. Tech. 15:409-419

Atkins TA, Lee PF, Stewart JM. 1992. Growth of wild rice (Z. palustris L.) in fertilized flocculent sediments. J. Environ. Manage. 35:217-228.

Azeem B, KuShaari K, Man ZB, Basit A, Thanh TH. 2014. Review on materials & methods to produce controlled release coated urea fertilizer. J. Control. Release, 181:11-21. DOI:

Babalola OO. 2010. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 32:1559-1570. DOI:

Bahadar H, Maqbool F, Niaz K, Abdollahi M. 2016. Toxicity of nanoparticles and an overview of current experimental models. Iran. Biomed. J. 20:1-11.

Beig B, Niazi MBK, Jahan Z, Hussain A, Zia MH, Mehran MT. 2020. Coating materials for slow release of nitrogen from urea fertilizer: a review. J. Plant Nutr. 43:1510-1533. DOI:

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57:233-266. DOI:

Bernardo MP, Guimarães GG., Majaron VF, Ribeiro C. 2018. Controlled release of phosphate from layered double hydroxide structures: dynamics in soil and application as smart fertilizer. ACS Sustain. Chem. Eng. 6:5152-5161. DOI:

Berruti A, Borriello R, Orgiazzi A, Barbera AC, Lumini E, Bianciotto V. 2014. Arbuscular mycorrhizal fungi and their value for ecosystem management. In: O. Grillo (ed.) Biodiversity: The Dynamic Balance of the Planet. InTech, Rijeta, Croacia, pp 159-191.

Bhattacharyya PN, Jha DK. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28:1327-1350. DOI:

Bi S, Barinelli V, Sobkowicz MJ. 2020. Degradable controlled release fertilizer composite prepared via extrusion: fabrication, characterization, and release mechanisms. Polymers 12:301. DOI:

Bilgili U, Açikgöz E. 2011. Effects of slow-release fertilizers on turf quality in a turf mixture. Turk. J. Field Crops 16:130-136.

Bley H, Gianello C, Santos LDS, Selau LPR. 2017. Nutrient release, plant nutrition, and potassium leaching from polymer-coated fertilizer. Rev. Bras. Ciênc. 41:e0160142.

Bock E, Wilderer PA, Freitag A. 1988. Growth of Nitrobacter in the absence of dissolved oxygen. Water Res. 22:245-250. DOI:

Bonfante P, Genre A. 2010. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1:1-11. DOI:

Bordoloi N, Baruah KK. 2017. A two-year field assessment on the effect of slow release of nitrogenous fertiliser on N2O emissions from a wheat cropping system. Soil Res. 55:191-200. DOI:

Bouwman AF, Boumans LJM, Batjes NH. 2002. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochem. Cycles 16:1058. DOI:

Brahmaprakash GP, Sahu PK, Lavanya G, Gupta A, Nair SS, Gangaraddi V. 2020. Role of additives in improving efficiency of bioformulation for plant growth and development. Front. Soil Environ. Microbiol. 1:1–10. DOI:

Broschat TK, Sandrock DR, Elliott ML, Gilman EF. 2008. Effects of fertilizer type on quality and nutrient content of established landscape plants in Florida. HortTechnology 18:278-285. DOI:

Bryant RJ, Anders M, McClung A. 2012. Impact of production practices on physicochemical properties of rice grain quality. J. Sci. Food Agric. 92:564-569 DOI:

Bunquin, MAB, Tandy, S, Beebout, SJ, Schulin, R 2017. Influence of soil properties on zinc solubility dynamics under different redox conditions in non–calcareous soils. Pedosphere 27:96-105. DOI:

Byrne MP, Tobin JT, Forrestal PJ, Danaher M, Nkwonta CG, Richards K, Cummins E, Hogan AS, O’Callaghan TF. 2020. Urease and nitrification inhibitors—As mitigation tools for greenhouse gas emissions in sustainable dairy systems: a review. Sustainability 12:6018 DOI:

Cakmak I. 2000. Tansley Review No. 111: possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 146:185-205.

Calabi-Floody M, Medina J, Rumpel C, Condron LM, Hernandez M, Dumont M, de la Luz Mora M. 2018. Smart fertilizers as a strategy for sustainable agriculture. Adv. Agron. 147:119-157 DOI:

Calabi-Floody M, Medina J, Suazo J, Ordiqueo M, Aponte H, Mora MDLL, Rumpel C. 2019. Optimization of wheat straw co-composting for carrier material development. Waste Manage. 98:37-49. DOI:

Callahan BP, Yuan Y, Wolfenden R. 2005. The burden borne by urease. J. Am. Chem. Soc. 127:10828-10829. DOI:

Cameron KC, Di HJ, Moir JL. 2013. Nitrogen losses from the soil/plant system: a review. Ann. Appl. Biol. 162:145-173. DOI:

Cantarella H, Otto R, Soares JR, de Brito Silva AG. 2018. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Adv. Res. 13:19-27. DOI:

Carreres R, Sendra J, Ballesteros R, Valiente EF, Quesada A, Carrasco D, Leganés F, de la Cuadra JG. 2003. Assessment of slow release fertilizers and nitrification inhibitors in flooded rice. Biol. Fertil. Soils 39:80-87. DOI:

Carvalho MDCS, Nascente AS, Teixeira PC. 2016. Fertilizers with coated urea in upland rice production and nitrogen apparent recovery. Biosci. J. 32:1155-1164.

Castillo EG, Tuong TP, Singh U, Inubushi K, Padilla J. 2006. Drought response of dry‐seeded rice to water stress timing and N‐fertilizer rates and sources. Soil Sci. Plant Nutr. 52:496-508. DOI:

Cazzato E, Tufarelli V, Ceci E, Stellacci AM, Laudadio V. 2012. Quality, yield and nitrogen fixation of faba bean seeds as affected by sulphur fertilization. Acta Agr. Scand. B-S P 62:732-738. DOI:

Chen D, Freney JR, Rochester I, Constable GA, Mosier AR, Chalk PM. 2008b. Evaluation of a polyolefin coated urea (Meister) as a fertilizer for irrigated cotton. Nutr. Cycling Agroecosyst. 81:245-254. DOI:

Chen D, Suter H, Islam A, Edis R, Freney JR, Walker CN. 2008a. Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers. Soil Res. 46:289-301. DOI:

Chen J, Lü S, Zhang Z, Zhao X, Li X, Ning P, Liu M. 2018. Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci. Total Environ. 613:829-839. DOI:

Chhipa H. 2017. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 15:15-22. DOI:

Chi Y, Yang P, Ren S, Ma N, Yang J, Xu Y. 2020b. Effects of fertilizer types and water quality on carbon dioxide emissions from soil in wheat-maize rotations. Sci. Total Environ. 698:134010. DOI:

Chi Y, Yang P, Ren S, Yang J. 2020a. Finding the optimal fertilizer type and rate to balance yield and soil GHG emissions under reclaimed water irrigation. Sci. Total Environ. 729:138954. DOI:

Chilundo M, Joel A, Wesström I, Brito R, Messing I. 2016. Effects of reduced irrigation dose and slow release fertiliser on nitrogen use efficiency and crop yield in a semi-arid loamy sand. Agric. Water Manage. 168:68-77. DOI:

Chu H, Hosen Y, Yagi K. 2004. Nitrogen oxide emissions and soil microbial activities in a Japanese andisol as affected by N-fertilizer management. Soil Sci. Plant Nutrit. 50:287-292. DOI:

Chu H, Hosen Y, Yagi K. 2007. NO, N2O, CH4 and CO2 fluxes in winter barley field of Japanese Andisol as affected by N fertilizer management. Soil Biol. Biochem. 39:330-339. DOI:

Cordell D, White S. 2014. Life's bottleneck: sustaining the world's phosphorus for a food secure future. Annu. Rev. Environ. Resour. 39:161-188. DOI:

Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, Larese FF. 2009. Nanoparticle dermal absorption and toxicity: a review of the literature. Int. Arch. Occup. Environ. Health 82:1043-1055. DOI:

Cruchaga S, Artola E, Lasa B, Ariz I, Irigoyen I, Moran JF, Aparicio-Tejo PM. 2011. Short term physiological implications of NBPT application on the N metabolism of Pisum sativum and Spinacea oleracea. J. Plant Physiol. 168:329-336. DOI:

Cunliffe M, Kertesz MA. 2006. Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils. Environ. Pollut. 144:228-237. DOI:

da Cruz DF, Bortoletto-Santos R, Guimarães GGF, Polito WL, Ribeiro C. 2017. Role of polymeric coating on the phosphate availability as a fertilizer: insight from phosphate release by castor polyurethane coatings. J. Agric. Food Chem. 65:5890-5895. DOI:

Dakora FD, Phillips DA. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35-47. DOI:

Danaher M, Jordan K. 2013. Identification of existing and emerging chemical residue contamination concerns in milk. Irish J. Agr. Food Res. 52:173-183.

Dankers AC, Kuper CF, Boumeester AJ, Fabriek BO, Kooter IM, Gröllers‐Mulderij M, Peter Tromp P, Nelissen I, Zondervan‐Van Den Beuken EK, Vandebriel RJ. 2018. A practical approach to assess inhalation toxicity of metal oxide nanoparticles in vitro. J. Appl. Toxicol. 38:160-171. DOI:

Delavaux CS, Smith‐Ramesh LM, Kuebbing SE. 2017. Beyond nutrients: a meta‐analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 98:2111-2119. DOI:

Deng F, Li W, Wang L, Hu H, Liao S, Pu SL, Tao YF, Li GH, Ren WJ. 2020. Effect of controlled-release fertilizers on leaf characteristics, grain yield, and nitrogen use efficiency of machine-transplanted rice in southwest China. Arch. Agron. Soil Sci. DOI:

DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. 2010. Nanotechnology in fertilizers. Nat. Nanotechnol. 5:91. DOI:

Devassine M, Henry F, Guerin P, Briand X. 2002. Coating of fertilizers by degradable polymers. Int. J. Pharm. 242:399-404. DOI:

Dewdar M, Abbas M, Hassanin A, Aleem H. 2018. Effect of nano micronutrients and nitrogen foliar applications on sugar beet (Beta vulgaris L.) of quantity and quality traits in marginal soils in Egypt. Int. J. Curr. Microbiol. Appl. Sci. 7:4490-4498. DOI:

Diez JA, Caballero R, Bustos A, Roman R, Cartagena MC, Vallejo A. 1996. Control of nitrate pollution by application of controlled release fertilizer (CRF), compost and an optimized irrigation system. Fertil. Res. 43:191–195. DOI:

Diez JA, Caballero R, Roman R, Tarquis A, Cartagena MC, Vallejo A. 2000. Integrated fertilizer and irrigation management to reduce nitrate leaching in Central Spain. J. Environ. Qual. 29:1539-1547. DOI:

Dimkpa CO, Bindraban PS. 2017. Nanofertilizers: new products for the industry? J. Agric. Food Chem. 66:6462-6473.

Dobbie KE, Smith KA. 2003. Impact of different forms of N fertilizer on N2O emissions from intensive grassland. Nutr. Cycling Agroecosyst. 67:37-46. DOI:

Donida MW, Rocha SC. 2002. Coating of urea with an aqueous polymeric suspension in a two-dimensional spouted bed. Dry. Technol. 20:685-704. DOI:

Drost D, Koenig R, Tindall T. 2002. Nitrogen use efficiency and onion yield increased with a polymer-coated nitrogen source. HortScience 37:338-342. DOI:

Drury CF, Reynolds WD, Yang XM, McLaughlin NB, Welacky TW, Calder W, Grant CA. 2012. Nitrogen source, application time, and tillage effects on soil nitrous oxide emissions and corn grain yields. Soil Sci. Soc. Am. J. 76:1268-1279. DOI:

El-Kereti MA, El-feky SA, Khater MS, Osman YA, El-sherbini EA. 2013. ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant. Recent Pat. Food Nutr. Agric. 5:169-181. DOI:

Erisman JW, Schaap M. 2004. The need for ammonia abatement with respect to secondary PM reductions in Europe. Environ. Pollut. 129:159-163. DOI:

Etesami H, Emami S, Alikhani HA. 2017. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects - a review. J. Soil Sci. Plant Nutr. 17:897-911. DOI:

Feng C, Lü S, Gao C, Wang X, Xu X, Bai X, Gao N, Liu M, Wu L. 2015. “Smart” fertilizer with temperature-and pH-responsive behavior via surface-initiated polymerization for controlled release of nutrients. ACS Sustain. Chem. Eng. 3:3157-3166. DOI:

Feng J, Hussain HA, Hussain S, Shi C, Cholidah L, Men S, Ke J, Wang L. 2020. Optimum water and fertilizer management for better growth and resource use efficiency of rapeseed in rainy and drought seasons. Sustainability 12:703. DOI:

Follmer C. 2008. Insights into the role and structure of plant ureases. Phytochemistry 69:18-28. DOI:

Fu J, Wang C, Chen X, Huang Z, Chen D. 2018. Classification research and types of slow controlled release fertilizers (SRFs) used-a review. Commun. Soil Sci. Plant Anal. 49:2219-2230. DOI:

Gaind S, Nain L. 2015. Soil–phosphorus mobilization potential of phytate mineralizing fungi. J. Plant Nutr. 38:2159-2175. DOI:

Gao X, Deng O, Ling J, Zeng M, Lan T. 2018. Effects of controlled-release fertilizer on nitrous oxide and nitric oxide emissions during wheat-growing season: field and pot experiments. Paddy Water Environ. 16:99-108. DOI:

Geiser M, Jeannet N, Fierz M, Burtscher H. 2017. Evaluating adverse effects of inhaled nanoparticles by realistic in vitro technology. Nanomaterials 7:49. DOI:

Gil-Ortiz R, Naranjo MÁ, Ruiz-Navarro A, Atares S, García C, Zotarelli L, San Bautista A, Vicente O. 2020a. Enhanced agronomic efficiency using a new controlled-released, polymeric-coated nitrogen fertilizer in rice. Plants 9:1183.

Gil-Ortiz R, Naranjo MÁ, Ruiz-Navarro A, Caballero-Molada M, Atares S, García C, Vicente O. 2020b. New eco-friendly polymeric-coated urea fertilizers enhanced crop yield in wheat. Agronomy 10:438. DOI:

Giroto AS, Fidélis SC, Ribeiro C. 2015. Controlled release from hydroxyapatite nanoparticles incorporated into biodegradable, soluble host matrixes. RSC Adv. 5:104179-104186. DOI:

Giroto AS, Guimarães GGF, Ribeiro C. 2018. A novel, simple route to produce urea: urea–formaldehyde composites for controlled release of fertilizers. J. Polym. Environ. 26:2448-2458. DOI:

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. 2010. Food security: the challenge of feeding 9 billion people. Science 327:812–818 DOI:

Golden BR, Slaton NA, Norman RJ, Wilson CE, DeLong RE. 2009. Evaluation of polymer‐coated urea for direct‐seeded, delayed‐flood rice production. Soil Sci. Soc. Am. J. 73:375-383. DOI:

Gomiero T. 2016. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability 8:281.

Gontia-Mishra I, Sapre S, Tiwari S. 2017. Zinc solubilizing bacteria from the rhizosphere of rice as prospective modulator of zinc biofortification in rice. Rhizosphere 3:185-190. DOI:

Goswami M, Suresh DEKA. 2020. Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: A review. Pedosphere 30:40-61. DOI:

Gough EC, Owen KJ, Zwart RS, Thompson JP. 2020. A systematic review of the effects of arbuscular mycorrhizal fungi on root-lesion nematodes, Pratylenchus spp. Front. Plant Sci. 11:923. DOI:

Gray EJ, Smith DL. 2005. Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol. Biochem. 37:395-412. DOI:

Guan Y, Song C, Gan Y, Li FM. 2014. Increased maize yield using slow-release attapulgite-coated fertilizers. Agron. Sustain. Dev. 34:657-665. DOI:

Guardia G, Cangani MT, Andreu G, Sanz-Cobena A, García-Marco S, Álvarez JM, Recio-Huetos J, Vallejo A. 2017. Effect of inhibitors and fertigation strategies on GHG emissions, NO fluxes and yield in irrigated maize. Field Crops Res. 204:135-145. DOI:

Guardia G, Marsden KA, Vallejo A, Jones DL, Chadwick DR. 2018. Determining the influence of environmental and edaphic factors on the fate of the nitrification inhibitors DCD and DMPP in soil. Sci. Total Environ. 624:1202-1212. DOI:

Guimarães GG, Klaic R, Giroto AS, Majaron VF, Avansi Jr W, Farinas CS, Ribeiro C. 2018. Smart fertilization based on sulfur–phosphate composites: synergy among materials in a structure with multiple fertilization roles. ACS Sustain. Chem. Eng. 6:12187-12196. DOI:

Guimarães GG, Mulvaney RL, Khan SA, Cantarutti RB, Silva AM. 2016. Comparison of urease inhibitor N‐(n‐butyl) thiophosphoric triamide and oxidized charcoal for conserving urea‐N in soil. J. Soil Sci. Plant Nutr. 179:520-528. DOI:

Guo C, Ren T, Li P, Wang B, Zou J, Hussain S, Cong R, Wu L, Lu J, Li X. 2019. Producing more grain yield of rice with less ammonia volatilization and greenhouse gases emission using slow/controlled-release urea. Environ. Sci. Pollut. Res. 26:2569-2579. DOI:

Guo YP, Wang HJ, Guo YJ, Guo LH, Chu LF, Guo CX. 2011. Fabrication and characterization of hierarchical ZSM-5 zeolites by using organosilanes as additives. Chem. Eng. J 166:391-400. DOI:

Haderlein L, Jensen TL, Dowbenko RE, Blaylock AD. 2001. Controlled release urea as a nitrogen source for spring wheat in western Canada: Yield, grain N content, and N use efficiency. Sci. World J. 1:114-121. DOI:

Halvorson AD, Del Grosso SJ, Jantalia CP. 2011. Nitrogen source effects on soil nitrous oxide emissions from strip‐till corn. J. Environ. Qual. 40:1775-1786. DOI:

Halvorson AD, Del Grosso SJ, Stewart CE. 2016. Manure and inorganic nitrogen affect trace gas emissions under semi‐arid irrigated corn. J. Environ. Qual. 45:906-914. DOI:

Halvorson AD, Del Grosso SJ. 2012. Nitrogen source and placement effects on soil nitrous oxide emissions from no‐till corn. J. Environ. Qual. 41:1349-1360. DOI:

Halvorson AD, Del Grosso SJ. 2013. Nitrogen placement and source effects on nitrous oxide emissions and yields of irrigated corn. J. Environ. Qual. 42:312-322. DOI:

Han Y, Chen S, Yang M, Zou H, Zhang Y. 2020. Inorganic matter modified water-based copolymer prepared by chitosan-starch-CMC-Na-PVAL as an environment-friendly coating material. Carbohydr. Polym. 234:115925. DOI:

Harder Nielsen T, Bonde TA, Sørensen J. 1998. Significance of microbial urea turnover in N cycling of three Danish agricultural soils. FEMS Microbiol. Ecol. 25:147-157. DOI:

Harman GE. 2000. Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Dis. 84:377-393. DOI:

Henke, C. R. (2000). Making a place for science: The field trial. Soc. Stud. Sci. 30:483-511.

Hergert GR, Ferguson C, Wortmann C, Shapiro C, Shaver T. 2011. Enhanced efficiency fertilizers: will they enhance my fertilizer efficiency. Proceedings of the 3rd Annual Crop Production Clinics, University of Nebraska-Lincoln Extension, United States.

Hobbs RJ, Gulmon SL, Hobbs VJ, Mooney HA. 1988. Effects of fertiliser addition and subsequent gopher disturbance on a serpentine annual grassland community. Oecologia 75:291-295. DOI:

Hoefler R, González-Barrios P, Bhatta M, Nunes JAR, Berro I, Nalin RS, Borges A, Covarrubias E, Diaz-Garcia L, Quincke M, Gutierrez L. 2020. Do spatial designs outperform classic experimental designs? J. Agric. Biol. Environ. Stat. 25:523-552. DOI:

Hou P, Li G, Wang S, Jin X, Yang Y, Chen X, Ding C, Liu Z, Ding Y. 2013. Methane emissions from rice fields under continuous straw return in the middle-lower reaches of the Yangtze River. J. Environ. Sci. 25:1874-1881. DOI:

Hric P, Jančovič J, Kovár P, Vozár Ľ. 2016a. The effect of varying speed release of nutrients from fertilizers on growth-production process of turf. Acta Univ. Agric. Silvic. Mendel. Brun. 64:441-447. DOI:

Hric P, Jančovič J, Vozár Ľ. 2016b. The comparison of organic and inorganic fertilizers influence on selected indicators of turf growth-production process. Acta Agric. Slov. 107:373-383. DOI:

Hu F, Zhao C, Feng F, Chai Q, Mu Y, Zhang Y. 2017. Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea. Plant Soil 412:235-251. DOI:

Hu XK, Su F, Ju XT, Gao B, Oenema O, Christie P, Huang BX, Jiang RF, Zhang FS. 2013. Greenhouse gas emissions from a wheat–maize double cropping system with different nitrogen fertilization regimes. Environ. Pollut. 176:198-207. DOI:

Hummel Jr NW, Waddington DV. 1984. Sulfur‐coated urea for turfgrass fertilization. Soil Sci. Soc. Am. J. 48:191-195. DOI:

Husain A, Muneer MA, Fan W, Gao-Fei Y, Shi-Zhou S, Feng W, Yuan L, Ke-Qiang Z. 2019. Application of optimum N through different fertilizers alleviate NH4+-N, NO3--N and total nitrogen losses in the surface runoff and leached water and improve nitrogen use efficiency of rice crop in Erhai Lake Basin, China. Commun. Soil. Sci. Plant. Anal. 50:716-738. DOI:

Ibrahim KA, Naz MY, Shukrullah S, Sulaiman SA, Ghaffar A, AbdEl-Salam NM. 2020. Nitrogen pollution impact and remediation through low cost starch based biodegradable polymers. Sci. Rep. 10: 5927. DOI:

Irfan SA, Razali R, KuShaari K, Mansor N, Azeem B, Versypt ANF. 2018. A review of mathematical modeling and simulation of controlled-release fertilizers. J. Control. Release 271:45-54. DOI:

Jagadeeswaran R, Murugappan V, Govindaswamy M. 2005. Study on the slow release NPK fertilizers on the dry matter production and rhizome yield of turmeric (Curcuma longa L). Madras Agric. J. 92:653-59.

Jahangirian H, Rafiee-Moghaddam R, Jahangirian N, Nikpey B, Jahangirian S, Bassous N, Saleh B, Kalantari K, Webster TJ. 2020. Green synthesis of zeolite/Fe2O3 nanocomposites: toxicity & cell proliferation assays and application as a smart iron nanofertilizer. International Journal of Nanomedicine, 15:1005-1020. DOI:

Jang JR, Hong EM, Song I, Kang MS, Cho JY, Cho YK. 2016. Impact of Different Fertilizer Types on Nutrient Pollutant Loads from Rice Paddy Fields in South Korea. Irrig. Drain. 65:105-111. DOI:

Jarosiewicz A, Tomaszewska M. 2003. Controlled-release NPK fertilizer encapsulated by polymeric membranes. J. Agric. Food Chem. 51:413-417. DOI:

Jat SL, Parihar CM, Singh AK, Kumar B, Choudhary M, Nayak HS, Parihard MD, Parihar N, Meena BR. 2019. Energy auditing and carbon footprint under long-term conservation agriculture-based intensive maize systems with diverse inorganic nitrogen management options. Sci. Total Environ. 664, 659-668. DOI:

Jha, Y. (2017). Potassium mobilizing bacteria: enhance potassium intake in paddy to regulates membrane permeability and accumulate carbohydrates under salinity stress. Braz. J. Biol. Sci. 4:333-344.

Ji Y, Liu G, Ma J, Xu H, Yagi K. 2012. Effect of controlled-release fertilizer on nitrous oxide emission from a winter wheat field. Nutr. Cycling Agroecosyst. 94:111-122. DOI:

Ji Y, Liu G, Ma J, Zhang G, Xu H, Yagi K. 2013. Effect of controlled-release fertilizer on mitigation of N2O emission from paddy field in South China: a multi-year field observation. Plant Soil 371:473-486. DOI:

Jiao X, Liang W, Chen L, Zhang H, Li Q, Wang P, Wen D. 2005. Effects of slow-release urea fertilizers on urease activity, microbial biomass, and nematode communities in an aquic brown soil. Sci. China Life Sci. 48:26.

Kabala C, Karczewska A, Gałka B, Cuske M, Sowiński J. 2017. Seasonal dynamics of nitrate and ammonium ion concentrations in soil solutions collected using MacroRhizon suction cups. Environ. Monit. Assess. 189:304. DOI:

Kah M, Kookana RS, Gogos A, Bucheli TD. 2018. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13:677-684. DOI:

Kalia A, Sharma SP, Kaur H. 2019. Nanoscale fertilizers: harnessing boons for enhanced nutrient use efficiency and crop productivity. In: K.A. Abd-Elsalam, R. Prasad, (eds.) Nanobiotechnology Applications in Plant Protection. Springer, Cham, Switzerland, pp 191-208.

Khan MS, Zaidi A, Wani PA. 2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron. Sustain. Dev. 27:29-43. DOI:

Kandil EE, Abdelsalam NR, Aziz AAAE, Ali HM, Siddiqui MH. 2020. Efficacy of nanofertilizer, fulvic acid and boron fertilizer on sugar beet (Beta vulgaris L.) yield and quality. Sugar Tech 22:782–791. DOI:

Kang SM, Waqas M, Shahzad R, You YH, Asaf S, Khan MA, Lee KE, Joo GJ, Kim SJ, Lee IJ. 2017. Isolation and characterization of a novel silicate-solubilizing bacterial strain Burkholderia eburnea CS4-2 that promotes growth of japonica rice (Oryza sativa L. cv. Dongjin). J. Soil Sci. Plant Nutr. 63:233-241. DOI:

Kim J, Yoo G, Kim D, Ding W, Kang H. 2017. Combined application of biochar and slow-release fertilizer reduces methane emission but enhances rice yield by different mechanisms. Appl. Soil Ecol. 117:57-62. DOI:

Kiss S, Simihăian M. 2002. Effect of soil urease inhibitors on germination, growth, and yield of plants. In: S. Kiss, M. Simihăian (eds.) Improving efficiency of urea fertilizers by inhibition of soil urease activity Springer, Dordrecht, pp 251-319.

Klaic R, Giroto AS, Guimarães GG, Plotegher F, Ribeiro C, Zangirolami TC, Farinas CS. 2018. Nanocomposite of starch-phosphate rock bioactivated for environmentally-friendly fertilization. Miner. Eng. 128:230-237. DOI:

Kloepper JW, Schroth MN. 1978. Plant growth-promoting rhizobacteria on radishes. Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, Gilbert-Clarey, Tours, France, pp. 879–882.

Knight EC, Guertal EA, Wood CW. 2007. Mowing and nitrogen source effects on ammonia volatilization from turfgrass. Crop Sci. 47:1628-1634. DOI:

Knijnenburg JT, Hilty FM, Oelofse J, Buitendag R, Zimmermann MB, Cakmak I, Grobler AF. 2018. Nano- and Pheroid technologies for development of foliar iron fertilizers and iron biofortification of soybean grown in South Africa. Chem. Biol. Technol. Agric. 5:26. DOI:

Kudoyarova GR, Vysotskaya LB, Arkhipova TN, Kuzmina LY, Galimsyanova NF, Sidorova LV, Gabbasova IM, Melentiev AI, Veselov SY. 2017. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants. Acta Physiol. Plant. 39:253.

Kumar D, Devakumar C, Kumar R, Das A, Panneerselvam P, Shivay YS. 2010. Effect of neem-oil coated prilled urea with varying thickness of neem-oil coating and nitrogen rates on productivity and nitrogen-use efficiency of lowland irrigated rice under Indo-Gangetic plains. J. Plant Nutr. 33:1939-1959. DOI:

Kumar M, Bauddh K, Sainger M, Sainger PA, Singh RP. 2015. Enhancing efficacy of Azotobactor and Bacillus by entrapping in organic matrix for rice cultivation. Agroecol. Sustain. Food Syst. 39:907-923. DOI:

Kumar S, Bauddh K, Barman SC, Singh RP. 2014. Organic matrix entrapped bio-fertilizers increase growth, productivity, and yield of Triticum aestivum L. and transport of NO3-, NO2-, NH4+ and PO4-3 from soil to plant leaves. J. Agr. Sci. Tech. 16:315-329.

Kumar V. 2014. Characterization, bio-formulation development and shelf-life studies of locally isolated bio-fertilizer strains. Oct. Jour. Env. Res. 2:32-37.

Landschoot PJ, Waddington DV. 1987. Response of turfgrass to various nitrogen sources. Soil Sci. Soc. Am. J. 51:225-230. DOI:

Latef AAHA, Hashem A, Rasool S, Abd Allah EF, Alqarawi AA, Egamberdieva D, Jan S, Anjum NA Ahmad P. 2016. Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. J. Plant Biol. 59:407-426. DOI:

Lemaire G, Ciampitti I. 2020. Crop mass and N status as prerequisite covariables for unraveling nitrogen use efficiency across genotype-by-environment-by-management scenarios: a review. Plants 9:1309. DOI:

León-Silva S, Arrieta-Cortes R, Fernández-Luqueño F, López-Valdez F. 2018. Design and production of nanofertilizers. In: F. López-Valdez, F. Fernández-Luqueño (eds.) Agricultural Nanobiotechnology. Springer, Cham, Switzerland, pp 17-31.

Li CK, Chen RY. 1980. Ammonium bicarbonate used as a nitrogen fertilizer in China. Fert. Res. 1:125-136. DOI:

Li G, Zhao B, Dong S, Zhang J, Liu P, Lu W. 2020b. Controlled-release urea combining with optimal irrigation improved grain yield, nitrogen uptake, and growth of maize. Agric. Water Manag. 227:105834. DOI:

Li J, Wan Y, Wang B, Waqas MA, Cai W, Guo C, Zhou S, Su R, Qin X, Gao Q, Wilkes A. 2018. Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissions and increase rice yield. Geoderma 315:1-10. DOI:

Li M, Hu H, He X, Jia J, Drosos M, Wang G, Liu F, Hu Z, Xi B. 2019. Organic carbon sequestration in soil humic substances as affected by application of different nitrogen fertilizers in a vegetable-rotation cropping system. J. Agric. Food Chem. 67:3106-3113. DOI:

Li M, Yang JT, Yan LY, Shi Y. 2014. The effects of different amounts of controlled release fertilizer on the root growth and the filling rate in winter wheat. Adv. J. Food Sci. Technol. 6:358-361. DOI:

Li P, Lu J, Hou W, Pan Y, Wang Y, Khan MR, Ren T, Cong R, Li, X. 2017. Reducing nitrogen losses through ammonia volatilization and surface runoff to improve apparent nitrogen recovery of double cropping of late rice using controlled release urea. Environ. Sci. Pollut. Res. 24:11722-11733. DOI:

Li X, Yuan W, Xu H, Cai Z, Yagi K. 2011. Effect of timing and duration of midseason aeration on CH4 and N2O emissions from irrigated lowland rice paddies in China. Nutr. Cycling Agroecosyst. 91:293-305. DOI:

Li Z, Liu Z, Zhang M, Li C, Li YC, Wan Y, Martin CG. 2020a. Long-term effects of controlled-release potassium chloride on soil available potassium, nutrient absorption and yield of maize plants. Soil Till. Res. 196:104438.

Liang D, Du C, Ma F, Shen Y, Wu K, Zhou J. 2019. Interaction between polyacrylate coatings used in controlled-release fertilizers and soils in wheat-rice rotation fields. Agric. Ecosyst. Environ. 286:106650. DOI:

Lin D, Xing B. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut. 150:243-250. DOI:

Liu CH, Wu JY, Chang JS. 2008. Diffusion characteristics and controlled release of bacterial fertilizers from modified calcium alginate capsules. Bioresour. Technol. 99:1904-1910. DOI:

Liu G, Zotarelli L, Li Y, Dinkins D, Wang Q, Ozores-Hampton M. 2014. Controlled-release and slow-release fertilizers as nutrient management tools. USA: US Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS.

Liu Q, Chen Y, Liu Y, Wen X, Liao Y. 2016. Coupling effects of plastic film mulching and urea types on water use efficiency and grain yield of maize in the Loess Plateau, China. Soil Till. Res. 157:1-10. DOI:

Liu Q, Ma H, Lin X, Zhou X, Zhao Q. 2019. Effects of different types of fertilizers application on rice grain quality. Chil. J. Agric. Res. 79:202-209. DOI:

Liu R, Lal R. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 514:131-139. DOI:

Liu X, Chen L, Hua Z, Mei S, Wang P, Wang S. 2020. Comparing ammonia volatilization between conventional and slow-release nitrogen fertilizers in paddy fields in the Taihu Lake region. Environ. Sci. Pollut. Res. 27:8386-8394. DOI:

Lu P, Zhang M, Li C, Liu Z. 2012. Effect of acid-modified clay on the microstructure and performance of starch films. Polym. Plast. Technol. Eng. 51:1340-1345. DOI:

Lü S, Feng C, Gao C, Wang X, Xu X, Bai X, Gao N, Liu M. 2016. Multifunctional environmental smart fertilizer based on L-aspartic acid for sustained nutrient release. J. Agr. Food Chem. 64:4965-4974. DOI:

Lyu X, Wang T, Ma Z, Zhao C, Siddique KH, Ju X. 2019. Enhanced efficiency nitrogen fertilizers maintain yields and mitigate global warming potential in an intensified spring wheat system. Field Crop. Res. 244:107624. DOI:

Ma Y. 2019. Seed coating with beneficial microorganisms for precision agriculture. Biotechnol. Adv. 37:107423. DOI:

Mącik M, Gryta A, Frąc M. 2020. Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Adv. Agron. 162:31-87. DOI:

Maheshwari DK, Dubey RC, Agarwal M, Dheeman S, Aeron A, Bajpai VK. 2015. Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRP1 and Bacillus licheniformis KRB1. Ecol. Eng. 81:272-277. DOI:

Majeed Z, Ramli NK, Mansor N, Man Z. 2015. A comprehensive review on biodegradable polymers and their blends used in controlled-release fertilizer processes. Rev. Chem. Eng. 31:69-95. DOI:

Malusá E, Sas-Paszt L, Ciesielska J. 2012. Technologies for beneficial microorganisms inocula used as biofertilizers. Sci. World J. 2012:491206 DOI:

Mandlik R, Thakral V, Raturi G, Shinde S, Nikolić M, Tripathi DK, Sonah H, Deshmukh R. 2020. Significance of silicon uptake, transport, and deposition in plants. J. Exp. Bot. 71:6703-6718. DOI:

Marchiol L. 2019. Nanofertilisers. An outlook of crop nutrition in the fourth agricultural revolution. Ital. J. Agron. 14:183-190.

Master Y, Laughlin RJ, Shavit U, Stevens RJ, Shaviv A. 2003. Gaseous nitrogen emissions and mineral nitrogen transformations as affected by reclaimed effluent application. J. Environ. Qual. 32:1204-1211. DOI:

Mastronardi E, Tsae P, Zhang X, Monreal C, DeRosa MC. 2015. Strategic role of nanotechnology in fertilizers: potential and limitations. In: M. Rai, C. Ribeiro, L. Mattoso, N. Duran (eds.) Nanotechnologies in food and agriculture. Springer, Switzerland, Cham, pp 25-67.

Mehmood U, Inam-ul-Haq M, Saeed M, Altaf A, Azam F, Hayat S. 2018. A brief review on plant growth promoting rhizobacteria (PGPR): a key role in plant growth promotion. Plant Prot. 2:77-82.

Melia PM, Cundy AB, Sohi SP, Hooda PS, Busquets R. 2017. Trends in the recovery of phosphorus in bioavailable forms from wastewater. Chemosphere 186:381-395. DOI:

Menéndez S, Barrena I, Setien I, González-Murua C, Estavillo JM. 2012. Efficiency of nitrification inhibitor DMPP to reduce nitrous oxide emissions under different temperature and moisture conditions. Soil Biol. Biochem. 53:82-89. DOI:

Menezes-Blackburn D, Jorquera M, Gianfreda L, Rao M, Greiner R, Garrido E, Mora ML. 2011. Activity stabilization of Aspergillus niger and Escherichia coli phytases immobilized on allophanic synthetic compounds and montmorillonite nanoclays. Bioresour. Technol. 102:9360-9367. DOI:

Menezes-Blackburn D, Jorquera MA, Gianfreda L, Greiner R, de la Luz Mora M. 2014. A novel phosphorus biofertilization strategy using cattle manure treated with phytase–nanoclay complexes. Biol. Fertil. Soils 50:583-592.

Mérigout P, Lelandais M, Bitton F, Renou J-P, Briand X, Meyer C, Daniel-Vedele F. 2008. Physiological and transcriptomic aspects of urea uptake and assimilation in Arabidopsis plants. Plant Physiol. 147:1225-1238.Mesias VSD, Agu ABS, Benablo PJL, Chen CH, Penaloza Jr DP. 2019. Coated NPK fertilizer based on citric acid-crosslinked chitosan/alginate encapsulant. J. Ecol. Eng. 20:1-12. DOI:

Metz B, OR Davidson, PR Bosch, R Dave, LA. Meyer. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Mijwel AK, Jassim HM. 2018. Effect of organic remnants compost and bioactiv fertilizer on growth and yield of potato. Plant Arch. 18:2389-2397.

Mikkelsen RL. 2011. The “4R” nutrient stewardship framework for horticulture. HortTechnology 21:658-662. DOI:

Millar N, Doll JE, Robertson GP. 2014. Management of nitrogen fertilizer to reduce nitrous oxide (N2O) emissions from field crops. Climate Change and Agriculture Fact Sheet Series, MSU Extension Bulletin E3152 (accessed on 23 November 2020).

Miltner ED, Stahnke GK, Johnston WJ, Golob CT. 2004. Late fall and winter nitrogen fertilization of turfgrass in two pacific northwest climates. HortScience 39:1745-1749. DOI:

Mira AB, Cantarella H, Souza-Netto GJM, Moreira LA, Kamogawa MY, Otto R. 2017. Optimizing urease inhibitor usage to reduce ammonia emission following urea application over crop residues. Agric. Ecosyst. Environ. 248:105-112. DOI:

Modolo LV, da-Silva CJ, Brandão DS, Chaves IS. 2018. A mini review on what we have learned about urease inhibitors of agricultural interest since mid-2000s. J. Adv. Res. 13:29-37. DOI:

Modolo LV, de Souza AX, Horta LP, Araujo DP, de Fatima A. 2015. An overview on the potential of natural products as ureases inhibitors: A review. J. Adv. Res. 6:35-44. DOI:

Mohammad Ghasemi V, Siavash Moghaddam S, Rahimi A, Pourakbar L, Popović-Djordjević J. 2020. Winter cultivation and nano fertilizers improve yield components and antioxidant traits of Dragon’s Head (Lallemantia iberica (MB) Fischer & Meyer). Plants 9:252. DOI:

Mohanty S, Swain CK, Sethi SK, Dalai PC, Bhattachrayya P, Kumar A, Tripathi R, Shahid M, Panda BB, Kumar U, Lal B, Gautam P, Munda S, Nayak AK 2017. Crop establishment and nitrogen management affect greenhouse gas emission and biological activity in tropical rice production. Ecol. Eng. 104:80-98. DOI:

Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C. 2016.Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol. Fertil. Soils 52:423-437. DOI:

Morikawa CK, Saigusa M, Nakanishi H, Nishizawa NK, Hasegawa K, Mori S. 2004. Co-situs application of controlled-release fertilizers to alleviate iron chlorosis of paddy rice grown in calcareous soil. Soil Sci. Plant Nutr. 50:1013-1021. DOI:

Murugappan V, Mishra B. 1979. N-lignin and margosa (neem) seed cake-blended urea as nitrogen source for wheat. Plant Soil, 52:131-134. DOI:

Nash P, Nelson K, Motavalli P. 2015. Reducing nitrogen loss with managed drainage and polymer‐coated urea. J. Environ. Qual. 44:256-264. DOI:

Nash PR, Nelson KA, Motavalli PP. 2013. Corn yield response to polymer and non-coated urea placement and timings. Int. J. Plant Prod. 7:373-392.

Nassal D, Spohn M, Eltlbany N, Jacquiod S, Smalla K, Marhan S, Kandeler E. 2018. Effects of phosphorus-mobilizing bacteria on tomato growth and soil microbial activity. Plant Soil 427:17-37. DOI:

Naz MY, Sulaiman SA. 2016. Slow release coating remedy for nitrogen loss from conventional urea: a review. J. Control. Release 225:109-120. DOI:

Nazari M, Smith DL. 2020. A PGPR-Produced bacteriocin for sustainable agriculture: a review of thuricin 17 characteristics and applications. Front Plant Sci. 11:916. DOI:

Nisar S, Shehzad MR, Rafiq M, Kousar S, Abdul H. 2017. Production of clay polymers for fertilizer coating. Int. J. Chem. Biochem. Sci. 12:122-129.

Nogueira V, Lopes I, Rocha-Santos T, Santos AL, Rasteiro GM, Antunes F, Gonçalves F, Soares AMVM, Cunha A, Almeida A, Gomes NNCM, Pereira R. 2012. Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci. Total Environ. 424:344-350 DOI:

Norton JM, Ouyang Y. 2019. Controls and adaptive management of nitrification in agricultural soils. Front. Microbiol. 10:1931. DOI:

Okazaki K, Shinano T, Oka N, Takebe M. 2012. Metabolite profiling of Komatsuna (Brassica rapa L.) field-grown under different soil organic amendment and fertilization regimes. Soil Sci. Plant Nutr. 58:696-706.

Owens LB, Edwards WM, Van Keuren RW. 1992. Nitrate levels in shallow groundwater under pastures receiving ammonium nitrate or slow‐release nitrogen fertilizer. J. Environ. Qual. 21:607-613. DOI:

Pahl-Wostl C. 2009. A conceptual framework for analysing adaptive capacity and multi-level learningprocesses in resource governance regimes. Glob. Environ. Change19:354-365 DOI:

Pampana S, Masoni A, Mariotti M, Ercoli L, Arduini I. 2018. Nitrogen fixation of grain legumes differs in response to nitrogen fertilisation. Exp. Agric. 54:66. DOI:

Parihar M, Rakshit A., Meena VS, Gupta VK, Rana K, Choudhary M., Tiwari G, Mishra PK, Pattanayak A, Bisht JK, Jatav SS, Khati P., Jatav HS. 2020. The potential of arbuscular mycorrhizal fungi in C cycling: a review. Arch. Microbiol. 202:1581-1596. DOI:

Parniske M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6:763-775. DOI:

Patterson IJ, Fuchs RME. 2001. The use of nitrogen fertilizer on alternative grassland feeding refuges for pink‐footed geese in spring. J. Appl. Ecol. 38:637-646. DOI:

Pohshna C, Mailapalli DR, Laha T. 2020. Synthesis of Nanofertilizers by Planetary Ball Milling. In: E. Lichtfouse (ed.) Sustainable agriculture reviews. Springer, Cham, Switzerland, pp 75-112.

Pollock KM. 1989. Grass establishment and performance on a high country soil fertilised with nitrogen. New Zealand J. Agric. Res. 32:7-15. DOI:

Porcel R, Aroca R, Ruiz-Lozano JM. 2012. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev. 32:181-200. DOI:

Prasad R, Pandey R, Barman I. 2016. Engineering tailored nanoparticles with microbes: quo vadis? WIREs Nanomed. Nanobiotechnol. 8:316-330. DOI:

Premanandh J. 2011. Factors affecting food security and contribution of modern technologies in food sustainability. J. Sci. Food Agric. 91:2707-2714. DOI:

Pulat M, Yoltay N. 2016. Smart fertilizers: preparation and characterization of gelatin-based hydrogels for controlled release of MAP and AN fertilizers. Agrochimica 60:249-261.

Qiao J, Yu X, Liang X, Liu Y, Borriss R, Liu Y. 2017. Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC Microbiol. 17:131. DOI:

Qin S, Zhang Z, Ning T, Ren S, Su L, Li Z. 2013. Abscisic acid and aldehyde oxidase activity in maize ear leaf and grain relative to post-flowering photosynthetic capacity and grain-filling rate under different water/nitrogen treatments. Plant Physiol. Biochem. 70:69-80. DOI:

Rai A, Kumar S, Bauddh K, Singh N, Singh RP. 2017. Improvement in growth and alkaloid content of Rauwolfia serpentina on application of organic matrix entrapped biofertilizers (Azotobacter chroococcum, Azospirillum brasilense and Pseudomonas putida). J. Plant Nutr. 40:2237-2247. DOI:

Rajala A, Peltonen-Sainio P. 2013. Slow-release fertilizer to increase grain N content in spring wheat. Agric. Food Sci. 22:318-324. DOI:

Rajan M, Shahena S, Chandran V, Mathew L. 2021. Controlled release of fertilizers—concept, reality, and mechanism. In: F.B. Lewu, T. Volova, S. Thomas, K.R. Rakhimol (eds.) Controlled release fertilizers for sustainable agriculture. Academic Press, pp 41-56.

Raliya R, Saharan V, Dimkpa C, Biswas P. 2017. Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J. Agric. Food Chem. 66:6487-6503. DOI:

Ramesh A, Sharma SK, Joshi OP, Khan IR. 2011. Phytase, phosphatase activity and P-nutrition of soybean as influenced by inoculation of Bacillus. Indian J. Microbiol. 51:94-99. DOI:

Ramli RA. 2019. Slow release fertilizer hydrogels: a review. Polym. Chem. 10:6073-6090. DOI:

Rao JK, Thompson JA, Sastry PVSS, Giller KE, Day JM. 1987. Measurement of N2-fixation in field-grown pigeonpea [Cajanus cajan (L.) Millsp.] using 15N-labelled fertilizer. Plant Soil 101:107-113.

Rawluk CDL, Grant CA, Racz GJ. 2001. Ammonia volatilization from soils fertilized with urea and varying rates of urease inhibitor NBPT. Can. J. Soil Sci. 81:239-246. DOI:

Real-Guerra R, Stanisçuaski F, Carlini CR. 2013. Soybean urease: over a hundred years of knowledge. In: J.E. Board (ed.), A comprehensive survey of international soybean research – Genetics, physiology, agronomy and nitrogen relationships, InTech, Croatia, pp 317-340.

Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ. 2012. Global agriculture and nitrous oxide emissions. Nat Clim Change 2:410–416 DOI:

Rice BL, Westoby M, Griffin GF, Friedel MH. 1994. Effects of supplementary soil nutrients on hummock grasses. Aust. J. Bot. 42:687-703. DOI:

Rindt DW, Blouin GM, Getsinger JG. 1968. Sulfur coating on nitrogen fertilizer to reduce dissolution rate. J. Agric. Food Chem. 16:773-778. DOI:

Robbins J. 2005. Slow-release fertilizers as tools. IFA International Workshop on Enhanced-Efficiency Fertilizers. Frankfurt, Germany, 28–39 June 2005.

Rodrigues JM, Lasa B, Aparicio-Tejo PM, González-Murua C, Marino D. 2018. 3, 4-Dimethylpyrazole phosphate and 2-(N-3, 4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture nitrification inhibitors: quantification in plant tissues and toxicity assays. Sci. Total Environ. 624:1180-1186. DOI:

Rosolem CA, Almeida DS, Rocha KF, Bacco GH. 2018. Potassium fertilisation with humic acid coated KCl in a sandy clay loam tropical soil. Soil Res. 56:244-251. DOI:

Ruthrof KX, Steel E, Misra S, McComb J, O'Hara G, Hardy GESJ, Howieson J. 2018. Transitioning from phosphate mining to agriculture: Responses to urea and slow release fertilizers for Sorghum bicolor. Sci. Total Environ. 625:1-7. DOI:

Saber WIA, Ghanem KM, El-Hersh MS. 2009. Rock phosphate solubilization by two isolates of Aspergillus niger and Penicillium sp. and their promotion to mung bean plants. Res. J. Microbiol. 4:235-250.

Sahai P, Sinha VB, Dutta R. 2019. Bioformulation and nanotechnology in pesticide and fertilizer delivery system for eco-friendly agriculture: a review. Sci. Agric. 3:2-10. DOI:

Saleh K, Steinmetz D, Hemati M. 2003. Experimental study and modeling of fluidized bed coating and agglomeration. Powder Technol. 130:116-123. DOI:

Sanders KR, Beasley JS. 2019. Fertilizer source affects nutrient losses from hybrid bermudagrass during surface runoff. HortTechnology 29:952-957. DOI:

Sanderson KR, Fillmore SAE. 2012. Slow-release nitrogen fertilizer in carrot production on Prince Edward Island. Can. J. Plant Sci. 92:1223-1228. DOI:

Santi LP, Goenadi DH. 2017. Solubilization of silicatefrom quartz mineral by potential silicate solubilizing bacteria. Menara Perkebunan 85:95-104.

Saranya K, Krishnan PS, Kumutha K, French J. 2011. Potential for biochar as an alternate carrier to lignite for the preparation of biofertilizers in India. Int. J. Agric. Environ. Biotechnol. 4:167-172.

Sarkar S, Datta SC, Biswas DR. 2014. Synthesis and characterization of nanoclay–polymer composites from soil clay with respect to their water‐holding capacities and nutrient‐release behavior. J. Appl. Polym. Sci. 131:39951. DOI:

Sattar A, Naveed M, Ali M, Zahir ZA, Nadeem SM, Yaseen M, Meena VS, Farooq M, Singh R, Rahman M, Meena HN. 2019. Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Appl. Soil Ecol. 133:146-159. DOI:

Schneider KD, Van Straaten P, De Orduña RM, Glasauer S, Trevors J, Fallow D, Smith PS. 2010. Comparing phosphorus mobilization strategies using Aspergillus niger for the mineral dissolution of three phosphate rocks. J. Appl. Microbiol. 108:366-374. DOI:

Scott N, Chen H. 2013. Nanoscale science and engineering for agriculture and food systems. Ind. Biotechnol. 9:17-18. DOI:

Senna AM, Botaro VR. 2017. Biodegradable hydrogel derived from cellulose acetate and EDTA as a reduction substrate of leaching NPK compound fertilizer and water retention in soil. J. Control. Release 260:194-201. DOI:

Shakoor A, Xu Y, Wang Q, Chen N, He F, Zuo H, Yin H, Yan X, Ma Y, Yang S. 2018. Effects of fertilizer application schemes and soil environmental factors on nitrous oxide emission fluxes in a rice-wheat cropping system, east China. PloS one 13:e0202016. DOI:

Shan L, He Y, Chen J, Huang Q, Lian X, Wang H, Liu Y. 2015b. Nitrogen surface runoff losses from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. Agric. Water Manag. 159:255-263. DOI:

Shan L, He Y, Chen J, Huang Q, Wang H. 2015a. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. J. Environ. Sci. 38:14-23. DOI:

Shang F, Ren S, Yang P, Li C, Ma N. 2015. Effects of different fertilizer and irrigation water types, and dissolved organic matter on soil C and N mineralization in crop rotation farmland. Water Air Soil Pollut. 226:396.

Shao G, Li Z, Ning T, Zheng Y. 2013. Responses of photosynthesis, chlorophyll fluorescence, and grain yield of maize to controlled‐release urea and irrigation after anthesis. J. Plant Nutr. Soil Sci. 176:595-602. DOI:

Shapiro C, Attia A, Ulloa S, Mainz M. 2016. Use of five nitrogen source and placement systems for improved nitrogen management of irrigated corn. Soil Sci. Soc. Am. J. 80:1663-1674. DOI:

Sharma VK, Singh RP. 2011. Organic matrix based slow release fertilizer enhances plant growth, nitrate assimilation and seed yield of Indian mustard (Brassica juncea L.). J. Environ. Biol. 32:619-624.

Shaviv A, Mikkelsen RL. 1993. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation-A review. Fert. Res. 35:1-12. DOI:

Shaviv A, Raban S, Zaidel E. 2003. Modeling controlled nutrient release from polymer coated fertilizers: Diffusion release from single granules. Environ. Sci. Technol. 37:2251-2256. DOI:

Shaviv A. 2000. Advances in controlled release fertilizers. Adv. Agron. 71:1-49.

Shen Y, Zhou J, Du C. 2019. Development of a polyacrylate/silica nanoparticle hybrid emulsion for delaying nutrient release in coated controlled-release urea. Coatings 9:88. DOI:

Shi N, Zhang Y, Li Y, Luo J, Gao X, Jing Y, Bo L. 2018. Water pollution risk from nitrate migration in the soil profile as affected by fertilization in a wheat-maize rotation system. Agric. Water Manag. 210:124-129. DOI:

Shimono H, Okada M, Yamakawa Y, Nakamura H, Kobayashi K, Hasegawa T. 2007. Lodging in rice can be alleviated by atmospheric CO2 enrichment. Agric. Ecosyst. Environ. 118:223-230. DOI:

Shitole AV, Gade RM, Bandgar MS, Wavare SH, Belkar YK. 2014. Utilization of spent mushroom substrate as carrier for biocontrol agent and biofertilizer. Bioscan 9:271-275.

Shoji S, Gandeza AT, Kimura K. 1991. Simulation of crop response to polyolefin‐coated urea: II. Nitrogen uptake by corn. Soil Sci. Soc. Am. J. 55:1468-1473. DOI:

Shoji S. 2005. Innovative use of controlled availability fertilizers with high performance for intensive agriculture and environmental conservation. Sci. China Life Sci. 48:912-920.

Shrivastava M, Srivastava PC, D’Souza SF. 2018. Phosphate-solubilizing microbes: diversity and phosphates solubilization mechanism. In: V. Meena (ed.) Role of rhizospheric microbes in soil. Springer, Singapore pp 137-165.

Sikora J, Niemiec M, Tabak M, Gródek-Szostak Z, Szeląg-Sikora A, Kuboń M, Komorowska M. 2020. Assessment of the efficiency of nitrogen slow-release fertilizers in integrated production of carrot depending on fertilization strategy. Sustainability, 12:1982.

Silva AG, Sequeira CH, Sermarini RA., Otto R. 2017. Urease inhibitor NBPT on ammonia volatilization and crop productivity: A meta‐analysis. Agron. J. 109:1-13. DOI:

Singh B, Satyanarayana T. 2012. Plant growth promotion by phytases and phytase-producing microbes due to amelioration in phosphorus availability. In: T. Satyanarayana, B.N. Johri, A. Prakash (eds.) Microorganisms in sustainable agriculture and biotechnology. Springer, Dordrecht pp 3-15.

Sivasakthi S, Usharani G, Saranraj P. 2014. Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: a review. Afr. J. Agric. Res. 9:1265-1277.

Soares JR, Cantarella H, Vargas VP, Carmo JB, Martins AA, Sousa RM, Andrade CA. 2015. Enhanced‐efficiency fertilizers in nitrous oxide emissions from urea applied to sugarcane. J. Environ. Qual. 44:423-430. DOI:

Sofo A, Scopa A, Manfra M, De Nisco M, Tenore G, Troisi J, Di Fiori R, Novellino E. 2011. Trichoderma harzianum strain T-22 induces changes in phytohormone levels in cherry rootstocks (Prunus cerasus × P. canescens). Plant Growth Regul. 65:421-425. DOI:

Song C, Guan Y, Wang D, Zewudie D, Li FM. 2014. Palygorskite-coated fertilizers with a timely release of nutrients increase potato productivity in a rain-fed cropland. Field Crop. Res. 166:10-17. DOI:

Souza CF, Faez R, Bacalhau FB, Bacarin MF, Pereira TS. 2017. In situ monitoring of a controlled release of fertilizers in lettuce crop. Eng. Agríc. 37:656-664. DOI:

Stagnari F, Pisante M. 2012. Slow release and conventional N fertilizers for nutrition of bell pepper. Plant Soil Environ. 58:268-274. DOI:

Steiner C, Garcia M, Zech W. 2009 Effects of charcoal as slow release nutrient carrier on n-p-k dynamics and soil microbial population: pot experiments with ferralsol substrate. In: W.I. Woods, W.G. Teixeira, J. Lehmann, C. Steiner, A. WinklerPrins, L. Rebellato (eds.) Amazonian Dark Earths: Wim Sombroek's Vision. Springer, Berlin, pp 325-338.

Stutterheim NC, Barbier JM, Nougaredes B. 1994. The efficiency of fertilizer nitrogen in irrigated, direct seeded rice (O. sativa L.) in Europe. Fertilizer Res. 37:235-244. DOI:

Suganya A, Saravanan A, Manivannan N. 2020. Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Commun. Soil Sci. Plant Anal. 51:2001-2021.

Sun H, Zhang H, Min J, Feng Y, Shi W. 2016. Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Paddy Water Environ. 14:105-111. DOI:

Sun H, Zhou S, Zhang J, Zhang X, Wang C. 2020. Year-to-year climate variability affects methane emission from paddy fields under irrigated conditions. Environ. Sci. Pollut. Res. 27:14780–14789. DOI:

Surendhiran D, Cui H, Lin L. 2020. Mode of transfer, toxicity and negative impacts of engineered nanoparticles on environment, human and animal health. In: C.M. Hussain (ed.) The ELSI handbook of nanotechnology, pp 165-204.

Suresh BG, Kumari S, Singh AK, Singla A, Paul A, Masih S, Masih H. 2018. Bio-formulation of halotolerant phosphate solubilizing Enterobacter cloacae HFZ-H4 strain to screen different carrier materials and their shelf life Study. Int. J. Curr. Microbiol. App. Sci 7:2373-2380. DOI:

Suter H, Lam SK, Walker C, Chen D. 2020. Enhanced efficiency fertilisers reduce nitrous oxide emissions and improve fertiliser 15N recovery in a Southern Australian pasture. Sci. Total Environ. 699:134147. DOI:

Taghizadeh Y, Jalilian J, Moghaddam SS. 2019. Do Fertilizers and Irrigation Disruption Change Some Physiological Traits of Safflower? J. Plant Growth Regul. 38:1439-1448. DOI:

Taimooz SH. 2018. Behavior of some nanomaterials in improving the growth of onion plant, Allium cepa and its effect on Pythium aphanidermatum. Plant Arch. 18:857-862.

Tao S, Liu J, Jin K, Qiu X, Zhang Y, Ren X, Hu S. 2011. Preparation and characterization of triple polymer‐coated controlled‐release urea with water‐retention property and enhanced durability. J. Appl. Polym. Sci. 120:2103-2111. DOI:

Tewari S, Sharma S. 2020. Rhizobial exopolysaccharides as supplement for enhancing nodulation and growth attributes of Cajanus cajan under multi-stress conditions: A study from lab to field. Soil Till. Res. 198:104545. DOI:

Thompson H. 2012. Food science deserves a place at the table – US agricultural research chief aims to raise the profile of farming and nutrition science. Nature, Available online: (accessed on 23 Novembre 2020). DOI:

Tilman D, Socolow, R, Foley, J A, Hill, J, Larson, E, Lynd, L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R. 2009. Beneficial biofuels—the food, energy, and environment trilemma. Science 325:270-271. DOI:

Timilsena YP, Adhikari R, Casey P, Muster T, Gill H, Adhikari B. 2015. Enhanced efficiency fertilisers: a review of formulation and nutrient release patterns. J. Sci. Food Agric. 95:1131-1142. DOI:

Treinyte J, Grazuleviciene V, Paleckiene R, Ostrauskaite J, Cesoniene L. 2018. Biodegradable polymer composites as coating materials for granular fertilizers. J. Polym. Environ. 26:543-554. DOI:

Trenkel ME. 1997. Controlled-release and stabilized fertilizers in agriculture. Paris: International Fertilizer Industry Association.

Trenkel ME. 2010. Slow-and controlled-release and stabilized fertilizers: An option for enhancing nutrient use efficiency in agriculture in agriculture. Paris: International Fertilizer Industry Association (IFA).

Tuong TP, Castillo EG, Cabangon RC, Boling A, Singh U. 2002. The drought response of lowland rice to crop establishment practices and N-fertilizer sources. Field Crop. Res. 74:243-257. DOI:

Valle G, McDowell LR, Prichard DL, Chenoweth PJ, Wright DL, Martin FG, Kunkle WE, Wilkinson NS. 2002. Selenium concentration of fescue and bahiagrasses after applying a selenium fertilizer. Commun. Soil Sci. Plant Anal. 33:1461-1472. DOI:

Van Trinh M, Tesfai M, Borrell A, Nagothu US, Bui TPL, Quynh VD. 2017. Effect of organic, inorganic and slow-release urea fertilisers on CH4 and N2O emissions from rice paddy fields. Paddy Water Environ. 15:317-330. DOI:

Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21:573. DOI:

Vempati RK, Hegde RS, Sloan JJ. 2011. U.S. Patent No. 8,034,147. Washington, DC: U.S. Patent and Trademark Office.

Venterea RT, Maharjan B, Dolan MS. 2011. Fertilizer source and tillage effects on yield‐scaled nitrous oxide emissions in a corn cropping system. J. Environ. Qual. 40:1521-1531. DOI:

Vidyalakshmi R, Paranthaman R, Bhakyaraj R. 2009. Sulphur oxidizing bacteria and pulse nutrition - A review. World J. Agric. Sci. 5:270-278.

Wada G, Aragones RC, Ando H. 1991. Effect of slow release fertilizer (meister) on the nitrogen uptake and yield of the rice plant in the tropics. Japanese J. Crop Sci. 60:101-106. DOI:

Wang J, Zhao Y, Zhang J, Zhao W, Müller C, Cai Z. 2017. Nitrification is the key process determining N use efficiency in paddy soils. J. Plant Nutr. Soil Sci. 180:648-658. DOI:

Wang W, Park G, Reeves S, Zahmel M, Heenan M, Salter B. 2016. Nitrous oxide emission and fertiliser nitrogen efficiency in a tropical sugarcane cropping system applied with different formulations of urea. Soil Res. 54:572-584. DOI:

Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B. 2012. Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ. Sci. Technol. 46:4434-4441. DOI:

Watts DB, Runion GB, Smith Nannenga KW, Torbert HA. 2015. Impacts of enhanced‐efficiency nitrogen fertilizers on greenhouse gas emissions in a coastal plain soil under cotton. J. Environ. Qual. 44:1699-1710. DOI:

Wilson ML, Rosen CJ, Moncrief JF. 2009. Potato response to a polymer‐coated urea on an irrigated, coarse‐textured soil. Agron. J. 101:897-905. DOI:

Wu Y, Li Y, Fu X, Shen J, Chen D, Wang Y, Liu X, Xiao R, Wei W, Wu J. 2018. Effect of controlled-release fertilizer on N2O emissions and tea yield from a tea field in subtropical central China. Environ. Sci. Pollut. Res. 25:25580-25590. DOI:

Xie L, Liu M, Ni B, Wang Y. 2012. New environment-friendly use of wheat straw in slow-release fertilizer formulations with the function of superabsorbent. Ind. Eng. Chem. Res. 51:3855-3862. DOI:

Xie L, Liu M, Ni B, Zhang X, Wang Y. 2011. Slow-release nitrogen and boron fertilizer from a functional superabsorbent formulation based on wheat straw and attapulgite. Chem. Eng. J. 167:342-348. DOI:

Yang G, Ji H, Liu H, Zhang Y, Chen L, Zheng J, Guo Z, Sheng J. 2020. Assessment of productivity, nutrient uptake and economic benefits of rice under different nitrogen management strategies. PeerJ 8:e9596.

Yang S, Peng S, Xu J, He Y, Wang Y. 2015. Effects of water saving irrigation and controlled release nitrogen fertilizer managements on nitrogen losses from paddy fields. Paddy Water Environ. 13:71-80 DOI:

Yang Y, He C, Huang L, Ban Y, Tang M. 2017. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PloS one 12:e0182264.

Ye Y, Liang X, Chen Y, Liu J, Gu J, Guo R, Li L. 2013. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crop. Res. 144:212-224.

Zanin L, Tomasi N, Zamboni A, Varanini Z, Pinton R. 2015. The urease inhibitor NBPT negatively affects DUR3-mediated uptake and assimilation of urea in maize roots. Front. Plant Sci. 6:1007. DOI:

Zhang A, Gao J, Liu R, Chen Z, Yang S, Yang Z, Shao H, Zhang Q, Yoshikazu N. 2016c. Nursery‐Box Total Fertilization Technology (NBTF) application for increasing nitrogen use efficiency in chinese irrigated riceland: N–soil interactions. Land Degrad. Dev. 27:1255-1265. DOI:

Zhang B, Li M, Li Q, Cao J, Zhang C, Zhang F, Song Z, Chen X. 2018. Accumulation and distribution characteristics of biomass and nitrogen in bitter gourd (Momordica charantia L.) under different fertilization strategies. J. Sci. Food Agric. 98:2681-2688.

Zhang J, Chen H, Wang A. 2006. Study on superabsorbent composite. IV. Effects of organification degree of attapulgite on swelling behaviors of polyacrylamide/organo-attapulgite composites. Eur. Polym. J. 42:101-108.

Zhang S, Shen T, Yang Y, Li YC, Wan Y, Zhang M, Tang Y, Allen SC. 2018. Controlled-release urea reduced nitrogen leaching and improved nitrogen use efficiency and yield of direct-seeded rice. J. Environ. Manage. 220:191-197. DOI:

Zhang S, Yang Y, Gao B, Wan Y, Li YC, Zhao C. 2016a. Bio-based interpenetrating network polymer composites from locust sawdust as coating material for environmentally friendly controlled-release urea fertilizers. J. Agric. Food Chem. 64:5692-5700. DOI:

Zhang ZS, Chen J, Liu TQ, Cao CG, Li CF. 2016b. Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China. Atmos. Environ. 144:274-281. DOI:

Zhao B, Dong S, Zhang J, Liu P. 2013. Effects of controlled-release fertiliser on nitrogen use efficiency in summer maize. PLoS One 8:e70569. DOI:

Zhou T, Wang Y, Huang S, Zhao Y. 2018. Synthesis composite hydrogels from inorganic-organic hybrids based on leftover rice for environment-friendly controlled-release urea fertilizers. Sci. Total Environ. 615:422-430. DOI:

Zohry AEHA, Abbady KA, Ahmed HM. 2017. Maximizing land productivity by diversified cropping systems with different nitrogen fertilizer types. Acta Agric. Slov. 109:481-492. DOI:

Zulfiqar F, Navarro M, Ashraf M, Akram NA, Munné-Bosch S. 2019. Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Sci. 289:110270. DOI:

Zvomuya F, Rosen CJ. 2001. Evaluation of polyolefin-coated urea for potato production on a sandy soil. HortScience 36:1057-1060. DOI:

Special issue on "Innovative fertilizers for sustainable agriculture"
Smart fertilizer, nanofertilizers, composite materials, bioformulation, slow-release fertilizers, control release fertilizers, fertilizers bioactivation.
  • Abstract views: 254

  • PDF: 97
  • Appendix: 8
How to Cite
Raimondi, G., Maucieri, C., Toffanin, A., Renella, G., & Borin, M. (2021). Smart fertilizers: what should we mean and where should we go?. Italian Journal of Agronomy, (AOP).