Foliar application of plant-based biostimulants improve yield and upgrade qualitative characteristics of processing tomato


- The effects of three plant-based biostimulants on yield and quality of processing tomato was explored.
- Application of protein hydrolysates and seaweed extract improve marketable yield.
- The biostimulants had different effect on nutritional and functional quality of tomato.
- Hydrophilic antioxidant activity and ascorbic acid content increased under protein hydrolysate application.


Tomato (Solanum lycopersicum L.) is a diffused worldwide vegetable. Great amounts of fertilizers are often applied for increasing yield and quality, without considering the negative effect on the environment. A possible perspective for reducing this risk is to raise the nitrogen use efficiency (NUE) through the use of plant biostimulants, which also improve yield and quality concomitantly. The aim of the current study was to verify the potential beneficial effect of three vegetal-based biostimulants on agronomical, qualitative and nitrogen use efficiency of a processing tomato crop. The experiment provided three biostimulants (an extract of brown seaweed [SwE], a legume-derived protein hydrolysate [LDPH] and a tropical plant extract). The following assessments were carried out: marketable and unmarketable yields, mean fruits weight, firmness, pH, total soluble solids (TSS), color parameters (a/b), hydrophilic antioxidant activity (HAA), lipophilic antioxidant activity (LAA), total ascorbic acid content (AsA), total phenols, nitrate and total nitrogen content, nitrogen use efficiency, N-uptake efficiency, and N-utilization. The foliar application of biostimulants especially protein hydrolysates and seaweed extract significantly affected the marketable yield with an average increase of 18.3% over the control and 41.3% average decrease in unmarketable yield. The N-use and N-uptake efficiency followed a similar trend, with biostimulants boosting it higher than control, +18.4% and +59.3%, respectively; the nitrogen content was also higher in fruits of sprayed plants: + 21.3% over control. This finding also reflects on higher dry matter accumulation and firmness in fruits of treated plants (+10.9% and +14.1% over control, respectively). The biostimulants application, in particular SwE and LDPH, also boosted TSS (+12.8%), the a/b color ratio (+7.5%), HAA and AsA (9.8% and 114.6%, respectively). Therefore, the legume-derived protein hydrolysates and extract of brown seaweed Ecklonia maxima seem a good sustainable approach to improve yield and quality of tomato for canning industries.



PlumX Metrics


Download data is not yet available.


Ali N, Farrell A, Ramsubhag A, and Jayaraman J, 2016. The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato under tropical conditions. J. Appl. Phycol. 28:1353–1362 DOI:

Aujla MS, Thind HS, Buttar GS, 2007. Fruit yield and water use efficiency of eggplant (Solanum melongema L.) as influenced by different quantities of nitrogen and water applied through drip and furrow irrigation. Sci. Hortic-Amsterdam. 112:142–148. DOI:

Brandt S, Pék Z, Barna É, Lugasi A, & Helyes L, 2006. Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J Sci Food and Agri. 86(4), 568-572. DOI:

Bremner JM, 1965. Total nitrogen, in: Black, C.A., Evans, D.D., White, I.L., Ensminger, L.E., Clark, F.E. (Eds.), Methods of soil analysis, Part 2: Chemical and microbiological properties. Am. Soc. Agro. Madison 1149-1178. DOI:

Bulgari R, Cocetta G, Trivellini A, Vernieri P, & Ferrante A, 2015. Biostimulants and crop responses: a review. Bio Agri Hort, 31(1), 1-17. DOI:

Calvo P, Nelson L, and Kloepper J W, 2014. Agricultural uses of plant biostimulants. Plant Soil 383:3–41. DOI:

Cammarano D, Ronga D, Di Mola I, Mori M, Parisi M, 2020. Impact of climate change on water and nitrogen use efficiencies of processing tomato cultivated in Italy. Agr. Water Manage., 241, 106336. DOI:

Caruso G, De Pascale S, Cozzolino E, Giordano M, El-Nakhel C, Cuciniello A, ... & Rouphael Y, 2019a. Protein hydrolysate or plant extract-based biostimulants enhanced yield and quality performances of greenhouse perennial wall rocket grown in different seasons. Plants, 8(7): 208. DOI:

Caruso G, Giordano M, Cozzolino E, Cuciniello A, Cenvinzo V; Bonini P, Colla G, Rouphael Y, 2019b. Yield and nutritional quality of Vesuvian Piennolo tomato PDO as affected by farming system and biostimulant application. Agronomy. 9:505 DOI:

Chapman NH, Bonnet J, Grivet L, Lynn J, Graham N, Smith R, Sun G, Walley PG, Poole M, Causse M, Graham JK, Baxter C, Seymour GB, 2012. High-resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interactions associated with a complex combinatorial locus. Plant Physiol. 159(4):1644-1657. DOI:

Colla G, Cardarelli M, Bonini P, & Rouphael Y, 2017a. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience. 52(9):1214-1220. DOI:

Colla G, Hoagland L, Ruzzi M, Cardarelli M, Bonini P, Canaguier R, Rouphael Y, 2017b. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 8: 2202. DOI:

Colla G, Rouphael Y, Canaguier R, Svecova E, Cardarelli M, 2014. Biostimulant action of a

plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 5:448.

Cozzolino E, Giordano M, Fiorentino N, El-Nakhel C, Pannico A, Di Mola I, Mori M, Kyriacou MC, Colla G, Rouphael Y, 2020. Appraisal of biodegradable mulching films and vegetal-derived biostimulant application as eco-sustainable practices for enhancing lettuce crop performance and nutritive value. Agronomy 10:427. DOI:

de Jong M, Mariani C, and Vriezen WH, 2009. The role of auxin and gibberellin in tomato fruit set. J. Expt. Bot. 60:1523–1532 DOI:

Del Giudice R, Petruk G, Raiola A, Barone A, Monti DM, Rigano MM, 2016. Carotenoids in fresh and processed tomato (Solanum lycopersicum) fruits protect cells from oxidative stress injury. J. Sci. Food Agric. 97:1616–1623. DOI:

Di Mola I, Conti S, Cozzolino E, Melchionna G, Ottaiano L, Testa A, ... & Mori M, 2021. Plant-based protein hydrolysate improves salinity tolerance in Hemp: agronomical and physiological aspects. Agronomy, 11(2), 342. DOI:

Di Mola I, Cozzolino E, Ottaiano L, Nocerino S, Rouphael Y, Colla G, ... & Mori M, 2020a. Nitrogen use and uptake efficiency and crop performance of baby spinach (Spinacia oleracea L.) and lamb’s lettuce (Valerianella locusta L.) grown under variable sub-optimal N regimes combined with plant-based biostimulant application. Agronomy. 10(2): 278. DOI:

Di Mola I, Cozzolino E, Ottaiano L, Giordano M, Rouphael Y, El-Nakhel C, ... & Mori M, 2020b. Effect of seaweed (Ecklonia maxima) extract and legume-derived protein hydrolysate biostimulants on baby leaf lettuce grown on optimal doses of nitrogen under greenhouse conditions. Aust. J. Crop Sci.14(9):1456-1464 DOI:

Di Mola I, Ottaiano L, Cozzolino E, Senatore M, Giordano M, El-Nakhel C, Sacco A, Rouphael Y, Mori M, 2019a. Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants. 8(11): 522. DOI:

Di Mola I, Cozzolino E, Ottaiano L, Giordano M, Rouphael Y, Colla G, & Mori M. 2019b. Effect of vegetal-and seaweed extract-based biostimulants on agronomical and leaf quality traits of plastic tunnel-grown baby lettuce under four regimes of nitrogen fertilization. Agronomy. 9(10): 571. DOI:

Djidonou D, Zhao X, Simonne E H, Koch K E, & Erickson J E, 2013. Yield, water and nitrogen-use efficiency in field-grown, grafted tomatoes. HortScience. 48(4):485-492. DOI:

du Jardin P, 2015. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 196:3–14. DOI:

Du YD, Cao H X, Liu S Q, Gu, X B, & Cao Y X, 2017. Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. J. Integr. Agr. 16(5):1153-1161. DOI:

Ertani A, Pizzeghello D, Francioso O, Sambo P, Sanchez-Cortes S, and Nardi S, 2014. Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches. Front. Plant Sci. 5:1–12. DOI:

Ertani A, Cavani L, Pizzeghello D, Brandellero E, Altissimo A, Ciavatta C, Nardi S, 2009. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J. Plant Nutr. Soil Sci.172: 237–244. DOI:

Fernández V, Eichert T, 2009 Uptake of hydrophilic solutes through plant leaves: Current state of knowledge and perspectives of foliar fertilization. Crit. Rev. Plant Sci 28:36–68. DOI:

Flores P, Hellin P, Fenoll J, 2009. Effect of manure and mineral fertilization on pepper nutritional quality. J Sci Food Agric. 89(9):1581–1586. DOI:

Fogliano V, Verde V, Randazzo G, Ritieni A, 1999. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem. 47:1035–1040. DOI:

Hawkesford M, Kopriva S, De Kok L, 2014. Nutrient use efficiency in plants–Concepts and approaches. In Plant Ecophysiol; Springer International Publishing: Basel, Switzerland. DOI:

Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Møller I S, & White P, 2012. Functions of macronutrients. In Marschner's mineral nutrition of higher plants. Academic Press. 135-189. DOI:

Huang Y, Lu R, & Chen K, 2018. Prediction of firmness parameters of tomatoes by portable visible and near-infrared spectroscopy. J. Food Engi. 222:185-198. DOI:

Kader AA, 2002. Postharvest technology of horticultural crops, p. 535. University of California, Division of Agriculture and Natural Resources Publication 3311.

Kalt W, 2005. Effects of production and processing factors on major fruit and vegetable antioxidants. J Food Sci. 70:R11–R19. DOI:

Kampfenkel K, Van Montagu M, Inzé D, 1995. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 225:165–167. DOI:

Khanam UKS, Oba S, Yanase E, Murakami Y, 2012. Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables. J. Funct. Foods 4:979–987. DOI:

Koukounararas A, Tsouvaltzis P, Siomos AS, 2013. Effect of root and foliar application of amino acids on the growth and yield of greenhouse tomato in different fertilization levels. J Food, Agric Environ 11:644–648

Kyriacou MC, Rouphael Y, 2018. Towards a new definition of quality for fresh fruits and vegetables. Sci. Hortic. 234:463–469. DOI:

Lucini L, Rouphael Y, Cardarelli M, Canaguier R, Kumar P, Colla G, 2015. The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hortic. 182:124–133. DOI:

Maach M, Boudouasar K, Akodad M, Skalli A, Moumen A, & Baghour M, 2020. Application of biostimulants improves yield and fruit quality in tomato. Int. J. Vege. Sci. 1-6. DOI:

Nangare DD, Singh Y, Kumar P S, & Minhas P S, 2016. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agri Water Manag. 171, 73-79. DOI:

Nardi S, Pizzeghello D, Schiavon M, Ertani A, 2016. Plant biostimulants: Physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci. Agric. 73:18–23. DOI:

Parađiković N, Vinković T, Vinković Vrček I, Žuntar I, Bojić M, & Medić-Šarić M, 2011. Effect of natural biostimulants on yield and nutritional quality: An example of sweet yellow pepper plants (Capsicum annuum L.). J. Sci. Food Agri. 91, 2146–2152. DOI:

Paul K, Sorrentino M, Lucini L, Rouphael Y, Cardarelli M, Bonini P, Reynaud H, Canaguier R, Trtílek M, Panzarová K. et al. 2019 Understanding the biostimulant action of vegetal-derived protein hydrolysates by high-throughput plant phenotyping and metabolomics: A case study on tomato. Front Plant Sci. 10:47. DOI:

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C, 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 26:1231–1237. DOI:

Rolland F, Moore B, Sheen J. 2002. Sugar sensing and signaling in plants. Plant Cell. 14: S185–S205. DOI:

Ronga D, Pentangelo A, & Parisi M, 2020. Optimizing N fertilization to improve yield, technological and nutritional quality of tomato grown in high fertility soil conditions. Plants, 9(5), 575. DOI:

Ronga D, Parisi M, Pentangelo A, Mori M, Di Mola I, 2019. Effects of nitrogen management on biomass production and dry matter distribution of processing tomato cropped in southern Italy. Agronomy, 9(12), 855. DOI:

Rouphael Y, Giordano M, Cardarelli M, Cozzolino E, Mori M, Kyriacou M, Bonini P, Colla G, 2018. Plant and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 8:126. DOI:

Rouphael Y, Kyriacou MC, Petropoulos SA, De Pascale S, Colla G, 2018b. Improving vegetable quality in controlled environments. Sci. Hortic. 234:275–289. DOI:

Rouphael Y, Colla G, Graziani G, Ritieni A, Cardarelli M, and De Pascale S, 2017a. Phenolic composition, antioxidant activity and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. Food Chem. 234:10–19. DOI:

Rouphael Y, Colla G, Giordano M, El-Nakhel C, Kyriacou M C, & De Pascale S, 2017b. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Scientia Horticulturae, 226:353-360. DOI:

Schiavon M, Ertani A, Nardi S, 2008. Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L. J. Agric. Food Chem. 56:11800–11808. DOI:

Singleton VL, Orthofer R, Lamuela-Raventós RM, 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 299:152–178. DOI:

Splittstoesser WE, 1990. Vegetable growing handbook: Organic and traditional methods. 3rd ed. Van Nostrand Reinhold, New York

Subbarao S B, Aftab Hussain I S, and Ganesh PT, 2015. Biostimulant activity of protein hydrolysate: influence on plant growth and yield. J. Plant Sci. Res. 2:125.

Villarreal-Sánchez JA, Ilyina A, Mendez-Jiménez LP, Robledo-Torres V, Rodríguez-Herrera R, Canales-López B, Rodríguez-Martínez J, 2003. Isolation of microbial groups from a seaweed extract and comparison of their effects on a growth of pepper culture (Capsicum annuum L.). Moscow Univ Chem Bull. 44:92–96

Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A, 2017. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 4, 5. DOI:

Special issue on "Innovative fertilizers for sustainable agriculture"
Solanum Lycopersicum L., sustainable agriculture, tropical plant extract, seaweed, protein hydrolysates, fruits quality, soluble solids, nitrogen efficiency.
  • Abstract views: 151

  • PDF: 101
How to Cite
Cozzolino, E., Di Mola, I., Ottaiano, L., El-Nakhel , C., Rouphael, Y., & Mori, M. (2021). Foliar application of plant-based biostimulants improve yield and upgrade qualitative characteristics of processing tomato. Italian Journal of Agronomy, (AOP).

Most read articles by the same author(s)