Foliar application of plant-based biostimulants improve yield and upgrade qualitative characteristics of processing tomato


  • Eugenio Cozzolino Council for Agricultural Research and Economics (CREA), Research Center for Cereal and Industrial Crops, Caserta, Italy.
  • Ida Di Mola | Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy.
  • Lucia Ottaiano Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy.
  • Christophe El-Nakhel Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy.
  • Youssef Rouphael Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy.
  • Mauro Mori Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy.


Tomato (Solanum lycopersicum L.) is a diffused worldwide vegetable. Great amounts of fertilizers are often applied for increasing yield and quality, without considering the negative effect on the environment. A possible perspective for reducing this risk is to raise the nitrogen use efficiency (NUE) through the use of plant biostimulants, which also improve yield and quality concomitantly. The aim of the current study was to verify the potential beneficial effect of three vegetal-based biostimulants on agronomical, qualitative and nitrogen use efficiency of a processing tomato crop. The experiment provided three biostimulants (an extract of brown seaweed [SwE], a legume-derived protein hydrolysate [LDPH] and a tropical plant extract). The following assessments were carried out: marketable and unmarketable yields, mean fruits weight, firmness, pH, total soluble solids (TSS), colour parameters (a/b), hydrophilic antioxidant activity (HAA), lipophilic antioxidant activity (LAA), total ascorbic acid content (AsA), total phenols, nitrate and total nitrogen content, nitrogen use efficiency, N-uptake efficiency, and N-utilization. The foliar application of biostimulants especially protein hydrolysates and seaweed extract significantly affected the marketable yield with an average increase of 18.3% over the control and 41.3% average decrease in unmarketable yield. The N-use and N-uptake efficiency followed a similar trend, with biostimulants boosting it higher than control, +18.4% and +59.3%, respectively; the nitrogen content was also higher in fruits of sprayed plants: +21.3% over control. This finding also reflects on higher dry matter accumulation and firmness in fruits of treated plants (+10.9% and +14.1% over control, respectively). The biostimulants application, in particular SwE and LDPH, also boosted TSS (+12.8%), the a/b colour ratio (+7.5%), HAA and AsA (9.8% and 114.6%, respectively). Therefore, the legume-derived protein hydrolysates and extract of brown seaweed Ecklonia maxima seem a good sustainable approach to improve yield and quality of tomato for canning industries.

- The effects of three plant-based biostimulants on yield and quality of processing tomato was explored.
- Application of protein hydrolysates and seaweed extract improve marketable yield.
- The biostimulants had different effect on nutritional and functional quality of tomato.
- Hydrophilic antioxidant activity and ascorbic acid content increased under protein hydrolysate application.



PlumX Metrics


Download data is not yet available.


Ali N, Farrell A, Ramsubhag A, and Jayaraman J, 2016. The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato under tropical conditions. J. Appl. Phycol. 28:1353-62. DOI:

Aujla MS, Thind HS, Buttar GS, 2007. Fruit yield and water use efficiency of eggplant (Solanum melongema L.) as influenced by different quantities of nitrogen and water applied through drip and furrow irrigation. Sci. Hortic. 112:142-8. DOI:

Brandt S, Pék Z, Barna É, Lugasi A, Helyes L, 2006. Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J. Sci. Food Agri. 86:568-72. DOI:

Bremner JM, 1965. Total nitrogen. pp 1149-1178 in C.A. Black, D.D. Evans, I.L. White, L.E. Ensminger, F.E. Clark (Eds.), Methods of soil analysis, Part 2: Chemical and microbiological properties. American Society of Agronomy, Madison, WI, USA. DOI:

Bulgari R, Cocetta G, Trivellini A, Vernieri P, & Ferrante A, 2015. Biostimulants and crop responses: a review. Bio. Agri. Hort. 31:1-17. DOI:

Calvo P, Nelson L, Kloepper JW, 2014. Agricultural uses of plant biostimulants. Plant Soil. 383:3-41. DOI:

Cammarano D, Ronga D, Di Mola I, Mori M, Parisi M, 2020. Impact of climate change on water and nitrogen use efficiencies of processing tomato cultivated in Italy. Agr. Water Manage. 241:106336. DOI:

Caruso G, De Pascale S, Cozzolino E, Giordano M, El-Nakhel C, Cuciniello A, Rouphael Y, 2019a. Protein hydrolysate or plant extract-based biostimulants enhanced yield and quality performances of greenhouse perennial wall rocket grown in different seasons. Plants 8:208. DOI:

Caruso G, Giordano M, Cozzolino E, Cuciniello A, Cenvinzo V, Bonini P, Colla G, Rouphael Y, 2019b. Yield and nutritional quality of Vesuvian Piennolo tomato PDO as affected by farming system and biostimulant application. Agronomy 9:505. DOI:

Chapman NH, Bonnet J, Grivet L, Lynn J, Graham N, Smith R, Sun G, Walley PG, Poole M, Causse M, Graham JK, Baxter C, Seymour GB, 2012. High-resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interactions associated with a complex combinatorial locus. Plant Physiol. 159:1644-57. DOI:

Colla G, Cardarelli M, Bonini P, Rouphael Y, 2017a. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortSci. 52:1214-20. DOI:

Colla G, Hoagland L, Ruzzi M, Cardarelli M, Bonini P, Canaguier R, Rouphael Y, 2017b. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 8:2202. DOI:

Colla G, Rouphael Y, Canaguier R, Svecova E, Cardarelli M, 2014. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 5:448. DOI:

Cozzolino E, Giordano M, Fiorentino N, El-Nakhel C, Pannico A, Di Mola I, Mori M, Kyriacou MC, Colla G, Rouphael Y, 2020. Appraisal of biodegradable mulching films and vegetal-derived biostimulant application as eco-sustainable practices for enhancing lettuce crop performance and nutritive value. Agronomy 10:427. DOI:

de Jong M, Mariani C, Vriezen WH, 2009. The role of auxin and gibberellin in tomato fruit set. J. Expt. Bot. 60:1523-32. DOI:

Del Giudice R, Petruk G, Raiola A, Barone A, Monti DM, Rigano MM, 2016. Carotenoids in fresh and processed tomato (Solanum lycopersicum) fruits protect cells from oxidative stress injury. J. Sci. Food Agric. 97:1616-23. DOI:

Di Mola I, Conti S, Cozzolino E, Melchionna G, Ottaiano L, Testa A, Mori M, 2021. Plant-based protein hydrolysate improves salinity tolerance in Hemp: agronomical and physiological aspects. Agronomy 11:342. DOI:

Di Mola I, Cozzolino E, Ottaiano L, Nocerino S, Rouphael Y, Colla G, Mori M, 2020a. Nitrogen use and uptake efficiency and crop performance of baby spinach (Spinacia oleracea L.) and lamb’s lettuce (Valerianella locusta L.) grown under variable sub-optimal N regimes combined with plant-based biostimulant application. Agronomy. 10:278. DOI:

Di Mola I, Cozzolino E, Ottaiano L, Giordano M, Rouphael Y, El-Nakhel C, Mori M, 2020b. Effect of seaweed (Ecklonia maxima) extract and legume-derived protein hydrolysate biostimulants on baby leaf lettuce grown on optimal doses of nitrogen under greenhouse conditions. Aust. J. Crop Sci.14:1456-64. DOI:

Di Mola I, Ottaiano L, Cozzolino E, Senatore M, Giordano M, El-Nakhel C, Sacco A, Rouphael Y, Mori M, 2019. Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants. 8:522. DOI:

Djidonou D, Zhao X, Simonne EH, Koch KE, Erickson JE, 2013. Yield, water and nitrogen-use efficiency in field-grown, grafted tomatoes. HortSci. 48:485-92. DOI:

du Jardin P, 2015. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196:3-14. DOI:

Du YD, Cao HX, Liu SQ, Gu, XB, Cao YX, 2017. Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. J. Integr. Agr. 16:1153-61. DOI:

Ertani A, Pizzeghello D, Francioso O, Sambo P, Sanchez-Cortes S, Nardi S, 2014. Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches. Front. Plant Sci. 5:1-12. DOI:

Ertani A, Cavani L, Pizzeghello D, Brandellero E, Altissimo A, Ciavatta C, Nardi S, 2009. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J. Plant Nutr. Soil Sci.172:237-44. DOI:

Fernández V, Eichert T, 2009 Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Crit. Rev. Plant Sci 28:36-68. DOI:

Flores P, Hellin P, Fenoll J, 2009. Effect of manure and mineral fertilization on pepper nutritional quality. J. Sci. Food Agric. 89:1581-6. DOI:

Fogliano V, Verde V, Randazzo G, Ritieni A, 1999. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem. 47:1035-40. DOI:

Hawkesford M, Kopriva S, De Kok L (Eds.), 2014. Nutrient use efficiency in plants - Concepts and approaches. Springer, Heidelberg, Germany. DOI:

Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Møller IS, White P, 2012. Functions of macronutrients. In Marschner’s mineral nutrition of higher plants. Acad. Press. 135-89. DOI:

Huang Y, Lu R, Chen K, 2018. Prediction of firmness parameters of tomatoes by portable visible and near-infrared spectroscopy. J. Food Engine. 222:185-98. DOI:

Kader AA, 2002. Postharvest technology of horticultural crops, p. 535. Division of Agriculture and Natural Resources, University of California, Publication n. 3311.

Kalt W, 2005. Effects of production and processing factors on major fruit and vegetable antioxidants. J. Food Sci. 70:R11-9. DOI:

Kampfenkel K, Van Montagu M, Inzé D, 1995. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 225:165-7. DOI:

Khanam UKS, Oba S, Yanase E, Murakami Y, 2012. Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables. J. Funct. Foods 4:979-87. DOI:

Koukounararas A, Tsouvaltzis P, Siomos AS, 2013. Effect of root and foliar application of amino acids on the growth and yield of greenhouse tomato in different fertilization levels. J. Food Agric. Environ. 11:644-8.

Kyriacou MC, Rouphael Y, 2018. Towards a new definition of quality for fresh fruits and vegetables. Sci. Hortic. 234:463-9. DOI:

Lucini L, Rouphael Y, Cardarelli M, Canaguier R, Kumar P, Colla G, 2015. The effect of a plant-derived biostimulant on metabolic proï¬ling and crop performance of lettuce grown under saline conditions. Sci. Hortic. 182:124-33. DOI:

Maach M, Boudouasar K, Akodad M, Skalli A, Moumen A, & Baghour M, 2020. Application of biostimulants improves yield and fruit quality in tomato. Int. J. Vege. Sci. 1-6. DOI:

Nangare DD, Singh Y, Kumar PS, Minhas PS, 2016. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agri. Water Manag. 171:73-9. DOI:

Nardi S, Pizzeghello D, Schiavon M, Ertani A, 2016. Plant biostimulants: Physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci. Agric. 73:18-23. DOI:

ParaÄ‘iković N, Vinković T, Vinković VrÄek I, Žuntar I, Bojić M, Medić-Å arić M, 2011. Effect of natural biostimulants on yield and nutritional quality: an example of sweet yellow pepper plants (Capsicum annuum L.). J. Sci. Food Agri. 91:2146-52. DOI:

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C, 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 26:1231-7. DOI:

Rolland F, Moore B, Sheen J. 2002. Sugar sensing and signalling in plants. Plant Cell. 14:S185-205. DOI:

Ronga D, Pentangelo A, Parisi M, 2020. Optimizing N fertilization to improve yield, technological and nutritional quality of tomato grown in high fertility soil conditions. Plants 9:575. DOI:

Ronga D, Parisi M, Pentangelo A, Mori M, Di Mola I, 2019. Effects of nitrogen management on biomass production and dry matter distribution of processing tomato cropped in southern Italy. Agronomy 9:855. DOI:

Rouphael Y, Giordano M, Cardarelli M, Cozzolino E, Mori M, Kyriacou M, Bonini P, Colla G, 2018a. Plant and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 8:126. DOI:

Rouphael Y, Kyriacou MC, Petropoulos SA, De Pascale S, Colla G, 2018b. Improving vegetable quality in controlled environments. Sci. Hortic. 234:275-89. DOI:

Rouphael Y, Colla G, Graziani G, Ritieni A, Cardarelli M, and De Pascale S, 2017a. Phenolic composition, antioxidant activity and mineral proï¬le in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. Food Chem. 234:10-9. DOI:

Rouphael Y, Colla G, Giordano M, El-Nakhel C, Kyriacou M C, & De Pascale S, 2017b. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 226:353-60. DOI:

Schiavon M, Ertani A, Nardi S, 2008. Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L. J. Agric. Food Chem. 56:11800-8. DOI:

Singleton VL, Orthofer R, Lamuela-Raventós RM, 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In: Methods in enzymology. Academic Press, Cambridge, MA, USA, 299:152-178. DOI:

Subbarao SB, Aftab Hussain IS, Ganesh PT, 2015. Biostimulant activity of protein hydrolysate: influence on plant growth and yield. J. Plant Sci. Res. 2:125.

Villarreal-Sánchez JA, Ilyina A, Mendez-Jiménez LP, Robledo-Torres V, Rodríguez-Herrera R, Canales-López B, Rodríguez-Martínez J, 2003. Isolation of microbial groups from a seaweed extract and comparison of their effects on a growth of pepper culture (Capsicum annuum L.). Moscow Univ. Chem. Bull. 44:92-6.

Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A, 2017. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 4:5. DOI:


Solanum Lycopersicum L., sustainable agriculture, tropical plant extract, seaweed, protein hydrolysates, fruits quality, soluble solids, nitrogen efficiency.
  • Abstract views: 753

  • PDF: 281
How to Cite
Cozzolino, E. ., Di Mola, I., Ottaiano, L., El-Nakhel , C., Rouphael, Y., & Mori, M. (2021). Foliar application of plant-based biostimulants improve yield and upgrade qualitative characteristics of processing tomato. Italian Journal of Agronomy, 16(2).

Most read articles by the same author(s)