Some physio-biochemical traits of sunflower (Helianthus annuus L.) as affected by arbuscular mycorrhizal fungi inoculation under different irrigation treatments

Submitted: 10 January 2022
Accepted: 8 August 2022
Published: 4 April 2023
Abstract Views: 825
PDF: 557
HTML: 121
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Negin Noroozi Department of Plant Production and Genetic Engineering, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran, Islamic Republic of.
  • Gholamreza Mohammadi mohammadi114@yahoo.com Department of Plant Production and Genetic Engineering, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran, Islamic Republic of.
  • Mokhtar Ghobadi Department of Plant Production and Genetic Engineering, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran, Islamic Republic of.

Plant-arbuscular mycorrhizal (AM) fungi association is one of the oldest symbiotic relationships between organisms. This relationship may be more important under stress conditions such as drought and can help the host plant tolerate drought. This study was conducted in 2016 and 2017 at the Agricultural Research Farm of Razi University, Kermanshah, Iran to evaluate the effect of AM fungi (AMF) inoculation (with either Funneliformis mosseae or Rhizophagus intraradices) on some physio-biochemical traits of three sunflower cultivars under different soil irrigation treatments (severe water deficit stress, mild water deficit stress and well-watered). In both years, water deficit conditions significantly reduced leaf relative water content (RWC), chlorophyll concentrations (a, b and total) and shoot phosphorus concentration (SPC) while simultaneously increasing shoot proline levels and malondialdehyde (MDA) concentrations. AMF inoculation had positive effects on RWC, chlorophyll concentrations and SPC irrespective of sunflower cultivar and irrigation treatment. Shoot proline concentration and MDA reduced more in AM than non-AM plants. In most cases F. mosseae performed better than R. intraradices in terms of plant performance. Moreover, the improvements caused by AM fungi were more evident under water deficit than well-watered condition. It may be concluded that AM inoculation can alleviate the negative effects of water deficit stress on some important physio-biochemical traits of sunflower grown in the field, and can be considered as a practical and economical approach to improve crop performance in environments exposed to water limitations.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Ali MB, Hahn E, Paek K, 2005. Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol. Biochem. 43:213-23. DOI: https://doi.org/10.1016/j.plaphy.2005.01.007
Aliasgharzad N, Neyshabouri MR, Salimi G, 2006. Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia, Bratislava 61:324-8. DOI: https://doi.org/10.2478/s11756-006-0182-x
Arnon AN, 1967. Method of extraction of chlorophyll in the plants. Agron. J. 23:112-21.
Asrar AA, Abdel-Fattah GM, Elhindi KM, 2012. Improving growth, lower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50:305-16. DOI: https://doi.org/10.1007/s11099-012-0024-8
Augé RM, 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3-42. DOI: https://doi.org/10.1007/s005720100097
Augé RM, Kubikova E, Moore J, 2001. Foliar dehydration tolerance of mycorrhizal cowpea, soybean and bush bean. New Phytol. 151:535-41. DOI: https://doi.org/10.1046/j.0028-646x.2001.00187.x
Augé RM, Moore JL, 2005. Arbuscular mycorrhizal symbiosis and plant drought resistance.
In: Mehrotra VS (ed). Mycorrhiza: role and applications. Nagpur: Allied Publishers. pp 136-62.
Augé RM, Toler HD, Saxton AM, 2015. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13-24. DOI: https://doi.org/10.1007/s00572-014-0585-4
Bago B, Azcon-Aguilar C, 1997. Changes in the rhizospheric pH induced by arbuscular mycorrhiza formation in onion (Allium cepa L). J. Plant Nutr. Soil Sci. 160:333-9. DOI: https://doi.org/10.1002/jpln.19971600231
Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballesta MC, Carvajal M, Ruiz-Lonazo JM, 2012. Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann. Bot. 109:1009-17. DOI: https://doi.org/10.1093/aob/mcs007
Bates LS, Waldren RP, Teare ID, 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39:205-7. DOI: https://doi.org/10.1007/BF00018060
Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I, 2017. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci. Rep. 7:4686. DOI: https://doi.org/10.1038/s41598-017-04959-0
Bayani R, Saateyi A, Faghani E, 2015. Influence of arbuscular mycorrhiza in phosphorus acquisition efficiency and drought-tolerance mechanisms in barley (Hordeum vulgare L.). Int. J. Biosci. 7:86-94. DOI: https://doi.org/10.12692/ijb/7.1.86-94
Beigbeder A, Vavadakis M, Navakoudis E, Kotzabasis K, 1995. Influence of polyamine inhibitors on light-independent and light dependent chlorophyll biosynthesis and on the photosynthetic rate. J. Photoch. Photobio. 28:235-42. DOI: https://doi.org/10.1016/1011-1344(95)07113-G
Buriro M, Sanjrani AS, Chachar QI, Chachar NA, Chachar SD, Buriro B, Gandahi AW, Mangan T, 2015. Effect of water stress on growth and yield of sunflower. J. Agric. Technol. 11:1547-63.
Chapman HD, Pratt PF, 1961. Methods of analysis for soils, plants and waters. California, USA: the university of california’s division of agricultural science.
Comas LH, Becker SR, Von Mark VC, Byrne PF, Dierig DA, 2013. Root traits contributing to plant productivity under drought. Front. Plant Sci. 4:442. DOI: https://doi.org/10.3389/fpls.2013.00442
Daniels BA, Trappe JM, 1980. Factors affecting spore germination of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeus. Mycologia 72:457-71. DOI: https://doi.org/10.1080/00275514.1980.12021207
De Andrade SAL, Domingues AP, Mazzafera P, 2015. Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress. Chemosphere 134:141-9. DOI: https://doi.org/10.1016/j.chemosphere.2015.04.023
Douds DD, Schenck NC, 1991. Germination and hyphal growth of VAM fungi during and after storage in soil at five matric potentials. Soil Biol. Biochem. 23:177-83. DOI: https://doi.org/10.1016/0038-0717(91)90132-4
Evelin H, Kapoor R, Giri B, 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann. Bot. 104:1263-80. DOI: https://doi.org/10.1093/aob/mcp251
Frosi G, Barros VA, Oliveira MT, Santos M, Ramos DG, Maia LC, Santos MG, 2016. Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest. J. Plant Physiol. 207:84-93. DOI: https://doi.org/10.1016/j.jplph.2016.11.002
Garces-Ruiz M, Calonne-Salmon M, Plouznikof K, Misson C, Navarrete-Mier M, Cranenbrouck S, Decleerck S, 2017. Dynamics of short-term phosphorus uptake by intact mycorrhizal and non-mycorrhizal maize plants grown in a circulatory semi-hydroponic cultivation system. Front. Plant Sci. 8:1471. DOI: https://doi.org/10.3389/fpls.2017.01471
García-López J, Lorite IJ, García-Ruiz R, Domínguez J, 2014. Evaluation of three simulation approaches for assessing yield of rainfed sunflower in a Mediterranean environment for climate change impact modelling. Clim. Change 124:147-62. DOI: https://doi.org/10.1007/s10584-014-1067-6
Göksoy AT, Demir AO, Turan ZM, Dağüstü N, 2004. Responses of sunflower (Helianthus annuus L.) to full and limited irrigation at different growth stages. Field Crops Res. 87:167-78. DOI: https://doi.org/10.1016/j.fcr.2003.11.004
Grumberg BC, María UC, Shroeder A, Vargas-Gil S, Luna CM, 2015. The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean. Biol. Fert. Soils 51:1-10. DOI: https://doi.org/10.1007/s00374-014-0942-7
Hazzoumi Z, Moustakime Y, Elharchli E, Joutei K.A. 2015. Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L). Chem. Biol. Technol. Agric. 2:10. DOI: https://doi.org/10.1186/s40538-015-0035-3
Heath RL, Packer L, 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-98. DOI: https://doi.org/10.1016/0003-9861(68)90654-1
Hinsinger P, 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: a review. Plant Soil 237:173-95.
Hodge A, Fitter H, 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Natl. Acad. Sci. 107:13754-9. DOI: https://doi.org/10.1073/pnas.1005874107
Hu CA, Delauney AJ, Verma DP, 1992. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyses the first two steps in proline biosynthesis in plants. Proc. Nat. Acad. Sci. USA 89:9354-8. DOI: https://doi.org/10.1073/pnas.89.19.9354
Hu Y, Xie W, Chen B, 2020. Arbuscular mycorrhiza improved drought tolerance of maize seedlings by altering photosystem II efficiency and the levels of key metabolites. Chem. Biol. Technol. Agric. 7:20. DOI: https://doi.org/10.1186/s40538-020-00186-4
Kormanik PP, Bryan WC, Schultz RC, 1980. Procedure and equipment for staining large number of plant roots for endomycorrhizal assay. Can. J. Microbiol. 26:536-8. DOI: https://doi.org/10.1139/m80-090
Lacan D, Baccou JC, 1998. High levels of antioxidant enzymes correlate with delayed senescence in non-netted muskmelon fruits. Planta 204:377-82. DOI: https://doi.org/10.1007/s004250050269
Lambers H, Finnegan PM, Laliberte E, Pearse SJ, Ryan MH, Shane MW, Veneklaas EJ, 2011. Phosphorus nutrition of proteaceae in severely phosphorus-impoverished soils: are there lessons to be learned for future crops? Plant Physiol. 156:1058-66. DOI: https://doi.org/10.1104/pp.111.174318
Lambers H, Raven JA, Shaver GR, Smith SE, 2008. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 23:95-103. DOI: https://doi.org/10.1016/j.tree.2007.10.008
Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ, 2006. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann. Bot. 98:693-713. DOI: https://doi.org/10.1093/aob/mcl114
Li H, Huang G, Meng Q, Ma L, Yuan L, Wang F, Zhang W, Cui Z, Sehn J, Chen X, Jiang R, Zhang F, 2011. Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant Soil 349:157-67. DOI: https://doi.org/10.1007/s11104-011-0909-5
Li J, Meng B, Chai H, Yang X, Song W, Li S, Lu A, Zhang T, Sun W, 2019. Arbuscular mycorrhizal fungi alleviate drought stress in C3 (leymus chinensis) and C4 (hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Front. Plant Sci. 10:499. DOI: https://doi.org/10.3389/fpls.2019.00499
Lin AJ, Zhang XH, Wong MH, Ye ZH, Lou LQ, Wang YS, 2007. Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environ. Geochem. Health 29:473-81. DOI: https://doi.org/10.1007/s10653-007-9116-y
Liu CY, Zhang F, Zhang DJ, Srivastava AK, Wu QS, Zou YN, 2018. Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Sci. Rep. 8:1978. DOI: https://doi.org/10.1038/s41598-018-20456-4
Liu J, Guo C, Chen ZL, He JD, Zou YN, 2016. Mycorrhizal inoculation modulates root morphology and root phytohormone responses in trifoliate orange under drought stress. Emir. J. Food Agr. 28:251. DOI: https://doi.org/10.9755/ejfa.2015-11-1044
Manoharan PT, Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Sharma MP, Muthuchelian K, 2010. Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. grown under different water stress conditions. Eur. J. Soil Biol. 46: 151-6. DOI: https://doi.org/10.1016/j.ejsobi.2010.01.001
Marjanović Ž, Uehlein N, Kaldenhof R, Zwiazek JJ, Weiss M, Hampp R, Nehls U, 2005. Aquaporins in poplar: what a difference a symbiont makes. Planta 222:258-68. DOI: https://doi.org/10.1007/s00425-005-1539-z
McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA, 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115:495-501. DOI: https://doi.org/10.1111/j.1469-8137.1990.tb00476.x
Mirshad PP, Puthur JT, 2016. Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (saccharum arundinaceum, retz.). Environ. Monit. Assess 188:425. DOI: https://doi.org/10.1007/s10661-016-5428-7
Neumann E, Schmid B, Romheld V, George E, 2009. Extraradical development and contribution to plant performance of an arbuscular mycorrhizal symbiosis exposed to complete or partial root-zone drying. Mycorrhiza 20:13-23. DOI: https://doi.org/10.1007/s00572-009-0259-9
Pal A, Pandey S, 2016. Role of arbuscular mycorrhizal fungi on plant growth and reclamation of barren soil with wheat (Triticum aestivum L.) crop. Int. J. Soil Sci. 12:25-31. DOI: https://doi.org/10.3923/ijss.2017.25.31
Phillips JM, Hayman DS, 1970. Improved procedures for clearing roots and staining parasitic vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Brit. Mycol. Soc. 55:158-61. DOI: https://doi.org/10.1016/S0007-1536(70)80110-3
Porcel R, Ruiz-Lozano JM, 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot. 55:1743-50. DOI: https://doi.org/10.1093/jxb/erh188
Rahimi A, Jahanbin SH, Salehi A, Farajee H, 2017. Changes in content of chlorophyll, carotenoids, phosphorus and relative water content of medicinal plant of borage )Borago officinails L.) under the influence of mycorrhizal fungi and water stress. J. Biol. Sci. 17:28-34. DOI: https://doi.org/10.3923/jbs.2017.28.34
Rakshit A, Bhadoria PBS, 2007. An indirect method for predicting activity of root exudates in field grown maize and groundnut in a low P soil. J. Indian Soc. Soil. Sci. 55:493-9.
Rani B, 2016. Effect of arbuscular mycorrhiza fungi on biochemical parameters in wheat (Triticum aestivum L.) under drought conditions. Doctoral diss. CCSHAU, Hisar.
Reddy GKM, Dangi KS, Kumar SS, Reddy AV, 2003. Effect of moisture stress on seed yield and quality in sunflower (Helianthus annuus L.). J. Oilseeds Res. 20:282-3.
Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Ryan MH, Veneklaas EJ, Lambers H, Oberson A, Culvenor RA, Simpson RJ, 2011. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121-56. DOI: https://doi.org/10.1007/s11104-011-0950-4
Rigou L, Mignard E, 1994. Factors of acidification of the rhizosphere of mycorrhizal plants. Measurement of pCO2 in the rhizosphere [Article in French]. Acta Bot. Gall. 141:533-9.
Ritchie SW, Nguyan HT, Holaday AS, 1990. Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci. 30:105-11. DOI: https://doi.org/10.2135/cropsci1990.0011183X003000010025x
Roosens NH, Thu TT, Iskandar HM, Jacobs M, 1998. Isolation of the ornithine-delta-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol. 117:263-71. DOI: https://doi.org/10.1104/pp.117.1.263
Ruíz-Sánchez M, Armada E, Muñoz Y, García de Salamone IE, Aroca R, Ruíz-Lozano JM, Azcón R, 2011. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J. Plant Physiol. 168:1031-7. DOI: https://doi.org/10.1016/j.jplph.2010.12.019
Safir GR, Boyer JS, Gerdemann JW, 1972. Nutrient status and mycorrhizal enhancement of water transport in soybean. Plant Physiol. 49:700-3. DOI: https://doi.org/10.1104/pp.49.5.700
SAS institute, 2008. User's guide. Release 9.2 Cary, NC, USA: SAS Institute.
Sato T, Ezawa T, Cheng W, Tawaraya K, 2015. Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus rhizophagusclarus. Soil Sci. Plant Nutr. 61:269-74. DOI: https://doi.org/10.1080/00380768.2014.993298
Smith SE, Gianninazi-Pearson V, 1988. Physiological interactions between symbionts in vesicular-arbuscular mycorrhiza plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:221-4. DOI: https://doi.org/10.1146/annurev.pp.39.060188.001253
Smith SE, Jakobsen I, Grønlund M, Smith FA, 2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 156:1050-7. DOI: https://doi.org/10.1104/pp.111.174581
Smith SE, Read DJ, 1997. Mycorrhizal Symbiosis. London, UK: Academic Press.
Szabados L, Savoure A, 2009. Proline: a multifunctional amino acid. Trends Plant Sci. 15:89-97. DOI: https://doi.org/10.1016/j.tplants.2009.11.009
Tawaraya K, Ohtaki M, Tanimura Y, Wagatsuma T, 2005. Mineralization of organic phosphate by hyphal exudates of arbuscular mycorrhizal. In: Li CJ, Zhang FS, Dobermann A, Hinsinger P, Lambers H, Li XL, Marschener P, Maene L, Mcgrath S, Oenema O, Peng Sb, Rengel Z, Shen QR, Welch R, Van Wiren N, Yan XL, Zhu YG, Li, Zhang CJ (eds.). Plant nutrition food security, human health and environmental protection. Beijing, China: Tsinghua University Press. pp 790-1.
Trotel-Aziz P, Niogret MF, Larher F, 2000. Proline level is partly under the control of abscisic acid in canola leaf discs during recovery from hyper-osmotic stress. Physiol. Plant. 110:376-83. DOI: https://doi.org/10.1034/j.1399-3054.2000.1100312.x
Turrini A, Bedini A, Loor MB, Santini G, Sbrana C, Giovannetti M, Avio L, 2018. Local diversity of native arbuscular mycorrhizal symbionts differentially affects growth and nutrition of three crop plant species. Biol. Fertil. Soils 54:203-17. DOI: https://doi.org/10.1007/s00374-017-1254-5
Turrini A, Giordani T, Avio L, Natali L, Giovannetti M, Cavallini A, 2016. Large variation in mycorrhizal colonization among wild accessions, cultivars, and inbreds of sunflower (Helianthus annuus L.). Euphytica 207:331-42. DOI: https://doi.org/10.1007/s10681-015-1546-5
Uzilday B, Turkan I, Sekmen AH, Ozgur R, Karakaya HC, 2012. Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress. Plant Sci. 182:59-70. DOI: https://doi.org/10.1016/j.plantsci.2011.03.015
Wang Y, Wang M, Li Y, Wu A, Huang J, 2018. Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One 13: e0196408. DOI: https://doi.org/10.1371/journal.pone.0196408
Wu HH, Zou1 YN, Rahman MM, Ni QD, Wu QS, 2017. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Sci. Rep. 7:42389. DOI: https://doi.org/10.1038/srep42389
Wu QS, Xia RX, 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 163:417-25. DOI: https://doi.org/10.1016/j.jplph.2005.04.024
Wu QS, Srivastava AK, Zou YN, 2013a. AMF-induced tolerance to drought stress in citrus: a review. Sci Hortic 164:77-87. DOI: https://doi.org/10.1016/j.scienta.2013.09.010
Wu QS, Zou YN, 2009. Mycorrhizal influence on nutrient uptake of citrus exposed to drought stress. Philipp. Agric. Scientist 92:33-8.
Wu QS, Zou YN, He XH, 2011. Differences of hyphal and soil phosphatase activities in drought-stressed mycorrhizal trifoliate orange (Poncirus trifoliata) seedlings. Sci. Hortic. 129:294-8. DOI: https://doi.org/10.1016/j.scienta.2011.03.051
Wu QS, Zou YN, Huang YM, Li Y, He XH, 2013b. Arbuscular mycorrhizal fungi induce sucrose cleavage for carbon supply of arbuscular mycorrhizas in citrus genotypes. Sci. Hortic. 160:320-5. DOI: https://doi.org/10.1016/j.scienta.2013.06.015
Yooyongwech S, Phaukinsang N, Cha-um S, Supaibulwatana K, 2013. Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regul. 69:285-93. DOI: https://doi.org/10.1007/s10725-012-9771-6
Zhang ZF, Zhang JC, Huang YQ, 2014. Effects of arbuscular mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings under greenhouse conditions. New Forest. 45: 545-56. DOI: https://doi.org/10.1007/s11056-014-9417-9
Zhao R, Guo W, Bi N, Guo J, Wang L, Zhao J, Zhang J, 2015. Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl. Soil Ecol. 88:41-9. DOI: https://doi.org/10.1016/j.apsoil.2014.11.016
Zhu J, Zhang C, Lynch J, 2010. The utility of phenotypic plasticity for root hair length for phosphorus acquisition. Funct. Plant Biol. 37:313-22. DOI: https://doi.org/10.1071/FP09197
Zhu XC, Song FB, Liu SQ, Liu TD, Zhou X, 2012. Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ. 58: 186-91. DOI: https://doi.org/10.17221/23/2011-PSE
Zhu X, Song F, Liu SQ, 2011. Arbuscular mycorrhiza impacts on drought stress of maize plants by lipid peroxidation, proline content and activity of antioxidant system. J. Food Agric. Environ. 9:583-7.

How to Cite

Noroozi, N., Mohammadi, G., & Ghobadi, M. (2023). Some physio-biochemical traits of sunflower (<em>Helianthus annuus</em> L.) as affected by arbuscular mycorrhizal fungi inoculation under different irrigation treatments. Italian Journal of Agronomy, 18(1). https://doi.org/10.4081/ija.2023.2033