Impact of long-term (1764-2017) air temperature on phenology of cereals and vines in two locations of northern Italy

Submitted: 7 September 2022
Accepted: 27 November 2022
Published: 30 December 2022
Abstract Views: 794
PDF: 337
Appendix: 64
HTML: 49
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Davide Cammarano davide.cammarano@agro.au.dk Department of Agroecology, Aarhus University, iClimate, Centre for Circular Bioeconomy (CBIO), Tjele, Denmark.
  • Francesca Becherini National Research Council (CNR), Institute of Polar Sciences (ISP), Venice Mestre, Italy.
  • Luisa Leolini Department of Agriculture, Food, Environment and Forestry, University of Florence (DAGRI), Florence, Italy.
  • Dario Camuffo National Research Council of Italy (CNR), Institute of Atmospheric Sciences and Climate (IASC), Padua, Italy.
  • Marco Moriondo National Research Council (CNR), Institute of Bio-Economy (IBE), Florence, Italy.
  • Antonio della Valle National Research Council of Italy (CNR), Institute of Atmospheric Sciences and Climate (IASC), Padua, Italy.
  • Roberto Ferrise https://orcid.org/0000-0001-8236-7823 Department of Agriculture, Food, Environment and Forestry, University of Florence (DAGRI), Florence, Italy.

Understanding how long-term temperature variability affects the phenology of the main agricultural crop is critical to develop targeted adaptation strategies to near and far future climate impacts. The objective of this study was to use crop phenology as a proxy to quantify the impact of a long-term temperature variability series (1764-2017) on a summer cereal crop (maize), spring wheat, winter wheat, and four different vines (perennials) in two locations representative of the main agricultural areas in northern Italy. To develop the phenological models for cereals and grapevines, the minimum (TDmin) and maximum (TDmax) daily temperatures for Milano and Bologna, northern Italy, from 1763 to 2017 were used. Results showed that wheat (spring and winter) has experienced a reduction in the growing period of 13 days for each °C of air temperature increase during the growing season. Vernalization requirements of winter wheat indicated that further increase in air temperature will determine a shift towards a supraoptimal range. The subsequent delay in vernalization fulfilment causes the grain filling phase to occur in warmer conditions and will be further shortened with consequences for final yield. Chilling accumulation in vines was fulfilled over the entire period under study with 90% effective chilling.

Highlights
- Long-term weather series show how the mean air temperature and its extremes have changed over the years.
- Simulation of cereals and perennials phenology using long-term weather series showed a shortening of the growing season and a shift of developmental stages.
- The number of days when the air temperature is above the crops’ physiological threshold increased, with implications for development and senescence rates.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Alderman PD, Qulligan E, Asseng S, Ewert F, Reynolds MP, 2013. Proceedings of the workshop modelling wheat response to high temperature. CIMMYT, El Batan, Mexico.
Asseng S, Cammarano D, Basso B, Chung U, Alderman PD, Sonder K, Reynolds M, Lobell DB, 2017. Hot spots of wheat yield decline with rising temperatures. Global Change Biol. 23:2464-72. DOI: https://doi.org/10.1111/gcb.13530
Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP, Alderman PD, Prasad PVV, Aggarwal PK, Anothai J, Basso B, Biernath C, Challinor AJ, De Sanctis G, Doltra J, Fereres E, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt LA, Izaurralde RC, Jabloun M, Jones CD, Kersebaum KC, Koehler A-K, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Palosuo T, Priesack E, Eyshi Rezaei E, Ruane AC, Semenov MA, Shcherbak I, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn PJ, Waha K, Wang E, Wallach D, Wolf J, Zhao Z, Zhu Y, 2015. Rising temperatures reduce global wheat production. Nat. Clim. Change 5:5. DOI: https://doi.org/10.1038/nclimate2470
Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn PJ, Rötter RP, Cammarano D, Brisson N, Basso B, Martre P, Aggarwal PK, Angulo C, Bertuzzi P, Biernath C, Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant R, Heng L, Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto P, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M, Waha K, Wallach D, White JW, Williams JR, Wolf J, 2013. Uncertainty in simulating wheat yields under climate change. Nat.Clim. Change 3:827. DOI: https://doi.org/10.1038/nclimate1916
Asseng S, Foster I, Turner NC, 2011. The impact of temperature variability on wheat yields. Global Change Biol. 17:997-1012. DOI: https://doi.org/10.1111/j.1365-2486.2010.02262.x
Asseng S, Jamieson PD, Kimball B, Pinter P, Sayre K, Bowden JW, Howden SM, 2004. Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. CropM, ft_macsur 85:85-102. DOI: https://doi.org/10.1016/S0378-4290(03)00154-0
Bassu S, Brisson N, Durand J-L, Boote K, Lizaso J, Jones JW, Rosenzweig C, Ruane AC, Adam M, Baron C, Basso B, Biernath C, Boogaard H, Conijn S, Corbeels M, Deryng D, De Sanctis G, Gayler S, Grassini P, Hatfield J, Hoek S, Izaurralde C, Jongschaap R, Kemanian AR, Kersebaum KC, Kim S-H, Kumar NS, Makowski D, Müller C, Nendel C, Priesack E, Pravia MV, Sau F, Shcherbak I, Tao F, Teixeira E, Timlin D, Waha K, 2014. How do various maize crop models vary in their responses to climate change factors. Global Change Biol. 20:2301-20. DOI: https://doi.org/10.1111/gcb.12520
Bock A, Sparks TH, Estrella N, Menzel A, 2013. Climate-induced changes in grapevine yield and must sugar content in Franconia (Germany) between 1805 and 2010. PLoS One 8. DOI: https://doi.org/10.1371/journal.pone.0069015
Brunetti M, Buffoni L, Lo Vecchio G, Maugeri M, Nanni T, 2001. Tre secoli di meteorologia a Bologna. Edizioni CUSL, Bologna.
Cammarano D, Ceccarelli S, Grando S, Romagosa I, Benbelkacem A, Akar T, Al-Yassin A, Pecchioni N, Francia E, Ronga D, 2019. The impact of climate change on barley yield in the Mediterranean basin. Eur. J. Agron. 106:1-11. DOI: https://doi.org/10.1016/j.eja.2019.03.002
Cammarano D, Zierden D, Stefanova L, Asseng S, O’Brien JJ, Jones JW, 2016. Using historical climate observations to understand future climate change crop yield impacts in the Southeastern US. Clim. Change 134:311-26. DOI: https://doi.org/10.1007/s10584-015-1497-9
Camuffo D, 2002. Errors in early temperature series arising from changes in style of measuring time, sampling schedule and number of observations. Clim. Change 53:331-52. DOI: https://doi.org/10.1007/978-94-010-0371-1_12
Camuffo D, Becherini F, della Valle A, 2019. The Beccari series of precipitation in Bologna, Italy, from 1723 to 1765. Clim. Change 155:359-76. DOI: https://doi.org/10.1007/s10584-019-02482-x
Camuffo D, Becherini F, della Valle A, Zanini V, 2022. A comparison between different methods to fill gaps in early precipitation series. Environ. Earth Sci. 81:345. DOI: https://doi.org/10.1007/s12665-022-10467-w
Camuffo D, della Valle A, Becherini F, Zanini V, 2020. Three centuries of daily precipitation in Padua, Italy, 1713–2018: history, relocations, gaps, homogeneity and raw data. Clim. Change 162:923-42. DOI: https://doi.org/10.1007/s10584-020-02717-2
Camuffo D, della Valle A, Bertolin C, Santorelli E, 2017. Temperature observations in Bologna, Italy, from 1715 to 1815: a comparison with other contemporary series and an overview of three centuries of changing climate. Clim. Change 142:7-22. DOI: https://doi.org/10.1007/s10584-017-1931-2
Camuffo D, Jones P, 2002. Improved understanding of past climatic variability from early daily European instrumental sources. Clim. Change 53:1-4. DOI: https://doi.org/10.1007/978-94-010-0371-1_1
Chuine I, Belmonte J, Mignot A, 2000a. A modelling analysis of the genetic variation of phenology between tree populations. J. Ecol. 88:561-70. DOI: https://doi.org/10.1046/j.1365-2745.2000.00468.x
Chuine I, Cambon G, Comtois P, 2000b. Scaling phenology from the local to the regional level: advances from species-specific phenological models. Global Change Biol. 6:943-52. DOI: https://doi.org/10.1046/j.1365-2486.2000.00368.x
Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD, 2007. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22:357-65. DOI: https://doi.org/10.1016/j.tree.2007.04.003
Dokoozlian NK, 1999. Chilling temperature and duration interact on the budbreak of 'Perlette' grapevine cuttings. HortSci. 34:1-3. DOI: https://doi.org/10.21273/HORTSCI.34.6.1
Fatima Z, Ahmed M, Hussain M, Abbas G, Ul-Allah S, Ahmad S, Ahmed N, Ali MA, Sarwar G, Haque Eu, Iqbal P, Hussain S, 2020. The fingerprints of climate warming on cereal crops phenology and adaptation options. Sci. Rep. 10:18013. DOI: https://doi.org/10.1038/s41598-020-74740-3
Fila G, 2012. Mathematical models for the analysis of the spatio-temporal variability of vine phenology. Ph.D., University of Padova, Padova, Italy.
Fraga H, 2020. Climate change: a new challenge for the winemaking sector. Agronomy 10:1465. DOI: https://doi.org/10.3390/agronomy10101465
García de Cortázar-Atauri I, Brisson N, Ollat N, Jacquet O, Payan J-C, 2009. Asynchronous dynamics of grapevine (Vitis vinifera) maturation: experimental study for a modelling approach. OENO One 43:83-97. DOI: https://doi.org/10.20870/oeno-one.2009.43.2.801
García de Cortázar-Atauri I, Duchêne E, Destrac-Irvine A, Barbeau G, de Rességuier L, Lacombe T, Parker AK, Saurin N, van Leeuwen C, 2017. Grapevine phenology in France: from past observations to future evolutions in the context of climate change. OENO One 51:115-26. DOI: https://doi.org/10.20870/oeno-one.2017.51.2.1622
Greer DH, Weston C, 2010. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Funct. Plant Biol. 37:206-14. DOI: https://doi.org/10.1071/FP09209
Hatfield JL, Prueger JH, 2015. Temperature extremes: Effect on plant growth and development. Weather Clim. Extremes 10:4-10. DOI: https://doi.org/10.1016/j.wace.2015.08.001
Intergovernmental Panel on Climate Change I, 2021. Climate Change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In: V. Masson-Delmotte, Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., Zhou B. (Eds.). Cambridge: Cambridge University Press.
Jones GV, Davis RE, 2000. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic. 51:249-61. DOI: https://doi.org/10.5344/ajev.2000.51.3.249
Koch B, Oehl F, 2018. Climate change favors grapevine production in temperate zones. Agric. Sci. 9:16. DOI: https://doi.org/10.4236/as.2018.93019
Koubouris GC, Metzidakis IT, Vasilakakis MD, 2009. Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and genotype. Environ. Exp. Botany 67:209-14. DOI: https://doi.org/10.1016/j.envexpbot.2009.06.002
Lavee S, 2000. Grapevine (Vitis vinifera) growth and performance in warm climates. In: A. Erez (Ed.), Temperate fruit crops in warm climates. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-017-3215-4_12
Leolini L, Costafreda-Aumedes S, A. Santos J, Menz C, Fraga H, Molitor D, Merante P, Junk J, Kartschall T, Destrac-Irvine A, van Leeuwen C, Malheiro A, Eiras-Dias J, Silvestre J, Dibari C, Bindi M, Moriondo M, 2020. Phenological model intercomparison for estimating grapevine budbreak date (Vitis vinifera L.) in Europe. Appl. Sci. 10:3800. DOI: https://doi.org/10.3390/app10113800
Leolini L, Moriondo M, Fila G, Costafreda-Aumedes S, Ferrise R, Bindi M, 2018. Late spring frost impacts on future grapevine distribution in Europe. CropM, ft_macsur 222:197-208. DOI: https://doi.org/10.1016/j.fcr.2017.11.018
Leolini L, Moriondo M, Romboli Y, Gardiman M, Costafreda-Aumedes S, García de Cortázar-Atauri I, Bindi M, Granchi L, Brilli L, 2019. Modelling sugar and acid content in Sangiovese grapes under future climates: an Italian case study. Clim. Res. 78:211-24. DOI: https://doi.org/10.3354/cr01571
López-Bernal Á, Morales A, García-Tejera O, Testi L, Orgaz F, De Melo-Abreu JP, Villalobos FJ, 2018. OliveCan: a process-based model of development, growth and yield of olive orchards. Front. Plant Sci. 9. DOI: https://doi.org/10.3389/fpls.2018.00632
López-Cedrón FX, Boote KJ, Ruíz-Nogueira B, Sau F, 2005. Testing CERES-Maize versions to estimate maize production in a cool environment. Eur. J. Agron. 23:89-102. DOI: https://doi.org/10.1016/j.eja.2005.01.001
Luterbacher J, Xoplaki E, Casty C, Wanner H, Pauling A, Küttel M, Rutishauser T, Brönnimann S, Fischer E, Fleitmann D, Gonzalez-Rouco FJ, García-Herrera R, Barriendos M, Rodrigo F, Gonzalez-Hidalgo JC, Saz MA, Gimeno L, Ribera P, Brunet M, Paeth H, Rimbu N, Felis T, Jacobeit J, Dünkeloh A, Zorita E, Guiot J, Türkes M, Alcoforado MJ, Trigo R, Wheeler D, Tett S, Mann ME, Touchan R, Shindell DT, Silenzi S, Montagna P, Camuffo D, Mariotti A, Nanni T, Brunetti M, Maugeri M, Zerefos C, Zolt SD, Lionello P, Nunes MF, Rath V, Beltrami H, Garnier E, Ladurie ELR, 2006. Chapter 1 Mediterranean climate variability over the last centuries: A review. In: P. Lionello, Malanotte-Rizzoli P., Boscolo R. (Eds.), Developments in Earth and environmental sciences. Elsevier, pp. 27-148. DOI: https://doi.org/10.1016/S1571-9197(06)80004-2
Maugeri M, Buffoni L, Delmonte B, Fassina A, 2002. Daily Milan temperature and pressure series (1763-1998): completing and homogenising the data. In: D. Camuffo, Jones P. (Eds.), Improved understanding of past climatic variability from early daily european instrumental sources, Springer Netherlands, Dordrecht, pp. 119-149. DOI: https://doi.org/10.1007/978-94-010-0371-1_5
Menzel A, Yuan Y, Matiu M, Sparks T, Scheifinger H, Gehrig R, Estrella N, 2020. Climate change fingerprints in recent European plant phenology. Global Change Biol. 26:2599-612. DOI: https://doi.org/10.1111/gcb.15000
Moriondo M, Bindi M, 2006. Comparison of temperatures simulated by GCMs, RCMs and statistical downscaling: potential application in studies of future crop development. Clim. Res. 30:11. DOI: https://doi.org/10.3354/cr030149
Moriondo M, Bindi M, Fagarazzi C, Ferrise R, Trombi G, 2011a. Framework for high-resolution climate change impact assessment on grapevines at a regional scale. CropM 11:553-67. DOI: https://doi.org/10.1007/s10113-010-0171-z
Moriondo M, Giannakopoulos C, Bindi M, 2011b. Climate change impact assessment: the role of climate extremes in crop yield simulation. Clim. Change 104:679-701. DOI: https://doi.org/10.1007/s10584-010-9871-0
Moriondo M, Jones GV, Bois B, Dibari C, Ferrise R, Trombi G, Bindi M, 2013. Projected shifts of wine regions in response to climate change. Clim. Change 119:825-39. DOI: https://doi.org/10.1007/s10584-013-0739-y
Moriondo M, Leolini L, Brilli L, Dibari C, Tognetti R, Giovannelli A, Rapi B, Battista P, Caruso G, Gucci R, Argenti G, Raschi A, Centritto M, Cantini C, Bindi M, 2019. A simple model simulating development and growth of an olive grove. Eur. J. Agron. 105:129-45. DOI: https://doi.org/10.1016/j.eja.2019.02.002
Neethling E, Barbeau G, Bonnefoy C, Quénol H, 2012. Change in climate and berry composition for grapevine varieties cultivated in the Loire Valley. Clim. Res. 53:89-101. DOI: https://doi.org/10.3354/cr01094
Porter JR, Gawith M, 1999. Temperatures and the growth and development of wheat: a review. Eur. J. Agron. 10:23-36. DOI: https://doi.org/10.1016/S1161-0301(98)00047-1
Reiter ER, 1975 Handbook for forecasters in the Mediterranean, weather phenomena of the Mediterranean basin: Part 1. General description of the meteorological processes. Montrey, CA: Naval Environmental Prediction Research Facility.
Ritchie JT, 1991. Wheat phasic development. In: R.J. Hanks, Ritchie J.T. (Eds.), Modeling plant and soil systems. Agronomy Monograph #31, American Society of Agronomy, Madison, Wisconsin, USA, pp. 31-54. DOI: https://doi.org/10.2134/agronmonogr31.c3
Ruiz-Ramos M, Ferrise R, Rodríguez A, Lorite IJ, Bindi M, Carter TR, Fronzek S, Palosuo T, Pirttioja N, Baranowski P, Buis S, Cammarano D, Chen Y, Dumont B, Ewert F, Gaiser T, Hlavinka P, Hoffmann H, Höhn JG, Jurecka F, Kersebaum KC, Krzyszczak J, Lana M, Mechiche-Alami A, Minet J, Montesino M, Nendel C, Porter JR, Ruget F, Semenov MA, Steinmetz Z, Stratonovitch P, Supit I, Tao F, Trnka M, de Wit A, Rötter RP, 2018. Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment. CropM, LiveM, TradeM, ft_macsur 159:260-74. DOI: https://doi.org/10.1016/j.agsy.2017.01.009
Sadras VO, Moran MA, 2013. Nonlinear effects of elevated temperature on grapevine phenology. Agric. Forest Meteorol. 173:107-15. DOI: https://doi.org/10.1016/j.agrformet.2012.10.003
Santos JA, Fraga H, Malheiro AC, Moutinho-Pereira J, Dinis L-T, Correia C, Moriondo M, Leolini L, Dibari C, Costafreda-Aumedes S, Kartschall T, Menz C, Molitor D, Junk J, Beyer M, Schultz HR, 2020. A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci. 10:3092. DOI: https://doi.org/10.3390/app10093092
Schouw JF, 1839. Tableau du climat de la végétation de l’Italie. Résultat de deux voyages en ce pays dans les années 1817-1819 et 1829-1830. Copenhagen.
Semenov M, 2008. Impacts of climate change on wheat in England and Wales. J. R. Soc. Interface 6:7. DOI: https://doi.org/10.1098/rsif.2008.0285
Soar CJ, Sadras VO, Petrie PR, 2008. Climate drivers of red wine quality in four contrasting Australian wine regions. Austr. J. Grape Wine Res. 14:78-90. DOI: https://doi.org/10.1111/j.1755-0238.2008.00011.x
Stucky BJ, Guralnick R, Deck J, Denny EG, Bolmgren K, Walls R, 2018. The plant phenology ontology: a new informatics resource for large-scale integration of plant phenology data. Front. Plant Sci. 9. DOI: https://doi.org/10.3389/fpls.2018.00517
Targioni-Tozzetti G, 1767. Alimurgia o sia il modo per rendere meno gravi le carestie proposto per il sollievo dei poveri ed umilmente presentato all’altezza reale del serenissimo Pietro Leopoldo principe reale d’Ungheria e di Boemia Arciduca d’Austria Gran Duca di Toscana. In: F. Vol. 1. Bouchard (ed.).
Toaldo G, 1781. Saggio Meteorologico della vera influenza degli Astri, delle Stagioni e mutazioni di Tempo, 2nd edition. Manfrè Stamperia del Seminario, Padua.
Visser ME, Both C, 2005. Shifts in phenology due to global climate change: the need for a yardstick. Proc. R. Soc. B Biol. Sci. 272:2561-69. DOI: https://doi.org/10.1098/rspb.2005.3356
Wallén CC, 1977. Climates of central and southern Europe. Springer, Amsterdam.
Wang E, Martre P, Zhao Z, Ewert F, Maiorano A, Rötter RP, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP, Alderman PD, Aggarwal PK, Anothai J, Basso B, Biernath C, Cammarano D, Challinor AJ, De Sanctis G, Doltra J, Dumont B, Fereres E, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt LA, Izaurralde RC, Jabloun M, Jones CD, Kersebaum KC, Koehler A-K, Liu L, Müller C, Naresh Kumar S, Nendel C, O'Leary G, Olesen JE, Palosuo T, Priesack E, Eyshi Rezaei E, Ripoche D, Ruane AC, Semenov MA, Shcherbak I, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn P, Waha K, Wallach D, Wang Z, Wolf J, Zhu Y, Asseng S, 2017. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat. Plants 3:17102. DOI: https://doi.org/10.1038/nplants.2017.102
Webber H, Ewert F, Olesen JE, Müller C, Fronzek S, Ruane AC, Bourgault M, Martre P, Ababaei B, Bindi M, Ferrise R, Finger R, Fodor N, Gabaldón-Leal C, Gaiser T, Jabloun M, Kersebaum K-C, Lizaso JI, Lorite IJ, Manceau L, Moriondo M, Nendel C, Rodríguez A, Ruiz-Ramos M, Semenov MA, Siebert S, Stella T, Stratonovitch P, Trombi G, Wallach D, 2018. Diverging importance of drought stress for maize and winter wheat in Europe. CropM 9:4249. DOI: https://doi.org/10.1038/s41467-018-06525-2
Webber H, Gaiser T, Oomen R, Teixeira E, Zhao G, Wallach D, Zimmermann A, Ewert F, 2016. Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe. Environ. Res. Letters. DOI: https://doi.org/10.1088/1748-9326/11/7/074007
Webber H, Kahiluoto H, Rötter RP, Ewert F, 2014. Enhancing climate resilience of cropping systems. In: J. Fuhrer, Gregory P.J. (Eds.). CAB International, Wallingford, pp. 167-185. DOI: https://doi.org/10.1079/9781780642895.0167
Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, Durand J-L, Elliott J, Ewert F, Janssens IA, Li T, Lin E, Liu Q, Martre P, Müller C, Peng S, Peñuelas J, Ruane AC, Wallach D, Wang T, Wu D, Liu Z, Zhu Y, Zhu Z, Asseng S, 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. 114:9326-31. DOI: https://doi.org/10.1073/pnas.1701762114

How to Cite

Cammarano, D., Becherini, F., Leolini, L., Camuffo, D., Moriondo, M., della Valle, A., & Ferrise, R. (2022). Impact of long-term (1764-2017) air temperature on phenology of cereals and vines in two locations of northern Italy. Italian Journal of Agronomy, 17(4). https://doi.org/10.4081/ija.2022.2164