Mitigating the impact of soil salinity: recent developments and future strategies

Submitted: 13 September 2022
Accepted: 1 December 2022
Published: 24 January 2023
Abstract Views: 2433
PDF: 1224
HTML: 358
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Soil salinity is among the major abiotic stresses that plants must face, mainly in arid and semiarid regions, and high salinity tolerance is an important agronomic trait to sustain food production. Agricultural soils are unstable and subject to changes in salinity level, and monitoring them at both the local and the regional scale is a relevant activity to adopt soil and water management strategies to decrease salt concentration in the root zone, thus minimizing impacts on plant growth and productivity. Additionally, beneficial soil microorganisms such as arbuscular mycorrhizal fungi and plant-growth-promoting bacteria, particularly when sourced in saline environments, can alleviate plant salinity stress by multiple mechanisms. In this review, some interventions aimed at reducing soil salinity will be discussed, as well as interventions aimed at reducing the vulnerability of crops to saline stress to obtain more tolerant plants.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Acuña J J, Campos M, de la Luz Mora M, Jaisi D P, Jorquera M A, 2019. ACCD-producing rhizobacteria from an Andean Altiplano native plant (Parastrephia quadrangularis) and their potential to alleviate salt stress in wheat seedlings. Appl. Soil Ecol. 136, 184-190. DOI: https://doi.org/10.1016/j.apsoil.2019.01.005
Ahmed, K., G. Qadir, A.R. Jami, M.Q. Nawaz, A. Rehim, K. Jabran and M. Hussain, 2015. Gypsum and farm manure application with chiseling improve soil properties and performance of fodder beet under saline-sodic conditions. Int. J. Agric. Biol., 17, 1225‒1230. DOI: https://doi.org/10.17957/IJAB/14.0036
Al Kharusi L, Sunkar R, Al-Yahyai R, Yaish M W, 2019. Comparative water relations of two contrasting date palm genotypes under salinity. Int. J. Agron. 2019, 4262013. DOI: https://doi.org/10.1155/2019/4262013
Allbed A, Kumar L, 2013. Soil salinity mapping and monitoring in arid and semiarid regions using remote sensing technology: a review. Adv. Remote Sens. 2, 373–385. DOI: https://doi.org/10.4236/ars.2013.24040
Atkinson N J, Urwin P E, 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot. 63, 3523-3543. DOI: https://doi.org/10.1093/jxb/ers100
Bai Y, Zuo W, Yan Y, Gu C, Guan Y, Mei L, Xue W, Shan Y, Feng K, 2017. Sewage sludge amendment combined with green manuring to a coastal mudflat salt-soil in eastern China: effects on soil physicochemical properties and maize yield. Int. J. Agron. 2017, 8526598. DOI: https://doi.org/10.1155/2017/8526598
Bansal J, Gupta K, Rajkumar M S, Garg R, Jain M, 2021. Draft genome and transcriptome analyses of halophyte rice Oryza coarctata provide resources for salinity and submergence stress response factors. Physiol. Plant. 173, 1309-1322. DOI: https://doi.org/10.1111/ppl.13284
Basu, S, Roychoudhury A, 2021. Transcript profiling of stress‐responsive genes and metabolic changes during salinity in indica and japonica rice exhibit distinct varietal difference. Physiol. Plant. 173, 1434-1447. DOI: https://doi.org/10.1111/ppl.13440
Bayoumy MA, Khalifa THH, Aboelsoud HM, 2019. Impact of some organic and inorganic amendments on some soil properties and wheat production under saline-sodic soil. J. Soil Sci. Agric. Eng. 10, 307-313. DOI: https://doi.org/10.21608/jssae.2019.43221
Bayuelo-Jimenez J S, Jasso-Plata N, Ochoa I, 2012. Growth and physiological responses of Phaseolus species to salinity stress. Int. J Agron. 2012, 1-13. DOI: https://doi.org/10.1155/2012/527673
Bello S K, Alayafi A H, Al-Solaimani S G, Abo-Elyousr K A M, 2021. Mitigating soil salinity stress with gypsum and bio-organic amendments: a review. Agronomy 11, 1735. DOI: https://doi.org/10.3390/agronomy11091735
Basile A, Buttafuoco G, Mele G, Tedeschi A, 2011. Complementary techniques to assess physical properties of a fine soil irrigated with saline water. Environ. Earth Sci. 66, 1797–1807. DOI: https://doi.org/10.1007/s12665-011-1404-2
Bharti N, Pandey S S, Barnawal D, Patel V K, Kalra A, 2016. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci. Rep. 6, 1-16. DOI: https://doi.org/10.1038/srep34768
Carty D T, Swetish S M, Crawley W W, Priebe W F, 1997. Major variables influencing technology solution for remediation of salt affected soils. In: Proceedings of the Rocky Mountain Symposium of Environmental Issues in Oil and Gas Operations; Cost Effective Strategies. Colorado School of Mines, Golden, CO, pp. 145–152.
Cheng X F, Wu H H, Zou Y N, Wu Q S, Kuča K, 2021. Mycorrhizal response strategies of trifoliate orange under well-watered, salt stress, and waterlogging stress by regulating leaf aquaporin expression. Plant Physiol. Biochem. 162, 27-35. DOI: https://doi.org/10.1016/j.plaphy.2021.02.026
Compant S, Clément C, Sessitsch A, 2010. Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42, 669-678. DOI: https://doi.org/10.1016/j.soilbio.2009.11.024
Cuevas J, Daliakopoulos IN, del Moral F, Hueso JJ, Tsanis IK, 2019. A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy 9, 295. DOI: https://doi.org/10.3390/agronomy9060295
Devkota K P, Devkota M, Rezaei M, Oosterbaan R, 2022. Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands. Agric. Systems 198, 103390. DOI: https://doi.org/10.1016/j.agsy.2022.103390
Duc N H, Vo A T, Haddidi I, Daood H, Posta K, 2021. Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant Eclipta prostrata (L.) and induce major changes in polyphenol profiles under salt stresses. Front. Plant Sci. 11, 612299. DOI: https://doi.org/10.3389/fpls.2020.612299
Estrada B, Aroca R, Barea J M, Ruiz-Lozano J M, 2013. Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci. 201, 42-51. DOI: https://doi.org/10.1016/j.plantsci.2012.11.009
Eswar D, Karuppusamy R, Chellamuthu S, 2012. Drivers of soil salinity and their correlation with climate change. Curr. Opin. Environ. Sustain. 50:310–318. DOI: https://doi.org/10.1016/j.cosust.2020.10.015
Etesami H, Beattie G A, 2018. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front. Microbiol. 9, 148. DOI: https://doi.org/10.3389/fmicb.2018.00148
Evelin H, Giri B, Kapoor R, 2013. Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 23, 71-86. DOI: https://doi.org/10.1007/s00572-012-0449-8
Garg N, Baher N, 2013. Role of arbuscular mycorrhizal symbiosis in proline biosynthesis and metabolism of Cicer arietinum L. (chickpea) genotypes under salt stress. J. Plant Growth Regul. 32, 767-778. DOI: https://doi.org/10.1007/s00344-013-9346-4
Huang C, Xue X, Wang T, De Mascellis R, Mele G, You Q, Peng F, Tedeschi A, 2010. Effects of saline water irrigation on soil properties in northwest China. Environ. Earth Sci. 63, 701–708. DOI: https://doi.org/10.1007/s12665-010-0738-5
Ingman M, Santelmann M V, Tilt B, 2015. Agricultural water conservation in China: Plastic mulch and traditional irrigation. Ecosyst. Health Sustain. 1, 1–11. DOI: https://doi.org/10.1890/EHS14-0018.1
IPCC (Intergovernmental Panel on Climate Change), 2013. Summary for policymakers. In: Stocker, T F, Qin D, Plattner, G K, Tignor M, Allen S K, Boschung J, ... Midgley P M (Eds.), Climate Change 2013: the Physical Science Basis. Contribution of Working Group to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge New York (CA, NY), p. 1535.
Ivushkin K, Bartholomeus H, Bregt A K, Pulatov A, Kempen B, de Sousa L, 2019. Global mapping of soil salinity change. Remote Sens. Environ. 231, 111260. DOI: https://doi.org/10.1016/j.rse.2019.111260
Kumar V, Kumar Srivastava A, Wani S H, Shriram V, Penna S, 2021. Transcriptional and post-transcriptional mechanisms regulating salt tolerance in plants. Physiol. Plant. 173, 1291-1294. DOI: https://doi.org/10.1111/ppl.13592
Letey J, Hoffman G J, Hopmans J W, Grattan S R, Suarez D, Corwin D L, Oster J D, Wu L, Amrhein C, 2011. Evaluation of soil salinity leaching requirement guidelines. Agric. Water Manag. 98, 502–506. DOI: https://doi.org/10.1016/j.agwat.2010.08.009
Lumini E, Pan J, Magurno F, Huang C, Bianciotto V, Xue X, Balestrini R, Tedeschi A, 2020. Native Arbuscular Mycorrhizal Fungi Characterization from Saline Lands in Arid Oases, Northwest China. J. Fungi 6, 80. DOI: https://doi.org/10.3390/jof6020080
Ma Z, Zhao X, He A, Cao Y, Han Q, Lu Y, Yong J W H, Huang J, 2022. Mycorrhizal symbiosis reprograms ion fluxes and fatty acid metabolism in wild jujube during salt stress. Plant Physiol. 189, 2481–2499. DOI: https://doi.org/10.1093/plphys/kiac239
Machado RMA, Serralheiro RP, 2017. Soil Salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3, 30; DOI: https://doi.org/10.3390/horticulturae3020030
Malash N M, Ali F A, Fatahalla M A, Khatab E A, Hatem M K, Tawfic S, 2008. Response of tomato to irrigation with saline water applied by different irrigation methods and water management strategies. Int. J. Plant Prod. 2, 101-116.
Mishra V K, Jha S K, Damodaran T, Singh Y P, Srivastava S, Sharma D K, Prasad J, 2019. Feasibility of coal combustion fly ash alone and in combination with gypsum and green manure for reclamation of degraded sodic soils of the IndoGangetic Plains: a mechanism evaluation. Land Degrad. Dev. 30, 1300-1312. DOI: https://doi.org/10.1002/ldr.3308
Mohanavelu A, Naganna S R, Al-Ansari N, 2021. Irrigation induced salinity and sodicity hazards on soil and groundwater: an overview of its causes, impacts and mitigation strategies. Agriculture 11, 983 DOI: https://doi.org/10.3390/agriculture11100983
Mukhopadhyay R, Sarkar B, Jat H S, Parbodh Chander Sharma P C, Bolan N S, 2021. Soil salinity under climate change: Challenges for sustainable agriculture and food security. J. Environ. Manag. 280, 111736. DOI: https://doi.org/10.1016/j.jenvman.2020.111736
Munns R, Tester M, 2008. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 59:651–681. DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911
Naguib W B, Divte P R, Chandra A, Sathee L, Singh B, Mandal P K, Anand A, 2021. Raffinose accumulation and preferential allocation of carbon (14C) to developing leaves impart salinity tolerance in sugar beet. Physiol. Plant. 173, 1421-1433. DOI: https://doi.org/10.1111/ppl.13420
Nascimento FX, Brígido C, Glick B R, Rossi MJ, 2016. The role of rhizobial ACC deaminase in the nodulation process of leguminous plants. Int. J Agron. 2016, 1369472. DOI: https://doi.org/10.1155/2016/1369472
Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J, 2020. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Sci. Total Environ. 743, 140682. DOI: https://doi.org/10.1016/j.scitotenv.2020.140682
Pan J, Peng F, Tedeschi A, Xue X, Wang T, Liao J, ... Huang C, 2020. Do halophytes and glycophytes differ in their interactions with arbuscular mycorrhizal fungi under salt stress? A meta-analysis. Bot. Stud. 61(1), 1-13. DOI: https://doi.org/10.1186/s40529-020-00290-6
Pang H C, Yu-Yi Li Y Y, Jin-Song Yang J S, Ye-Sen Liang YS, 2010. Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions. Agric. Water Manag. 97. 1971-1977. DOI: https://doi.org/10.1016/j.agwat.2009.08.020
Pollastri S, Savvides A, Pesando M, Lumini E., Volpe M G, Ozudogru E A, Faccio A, De Cunzo,F, Michelozzi M, Lambardi M, Fotopoulos V, Loreto F, Centritto M, Balestrini R, 2018. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta 247, 573-585. DOI: https://doi.org/10.1007/s00425-017-2808-3
Rahil M, Hajjeh H, Qanadillo A, 2013. Effect of Saline Water Application through Different Irrigation Intervals on Tomato Yield and Soil Properties. Open J. Soil Sci. 3, 143-147. DOI: https://doi.org/10.4236/ojss.2013.33016
Ravindran K C, Venkatesan K, Balakrishnan V, Chellappan K P, Balasubramanian, T, 2007. Restoration of saline land by halophytes for Indian soils. Soil Biol. Biochem. 39, 2661-2664. DOI: https://doi.org/10.1016/j.soilbio.2007.02.005
Rivero J, Álvarez D, Flors V, Azcón‐Aguilar C, Pozo M J, 2018. Root metabolic plasticity underlies functional diversity in mycorrhiza‐enhanced stress tolerance in tomato. New Phytol. 220, 1322-1336. DOI: https://doi.org/10.1111/nph.15295
Ruppel S, Franken P, Witzel K, 2013. Properties of the halophyte microbiome and their implications for plant salt tolerance. Funct. Plant Biol. 40, 940-951. DOI: https://doi.org/10.1071/FP12355
Santander C, Aroca R, Cartes P, Vidal G, Cornejo P, 2021. Aquaporins and cation transporters are differentially regulated by two arbuscular mycorrhizal fungi strains in lettuce cultivars growing under salinity conditions. Plant Physiol. Biochem. 158, 396-409. DOI: https://doi.org/10.1016/j.plaphy.2020.11.025
Saravi, H B, Gholami A, Pirdashti H, Firouzabadi M B, Asghari H, Yaghoubian Y, 2022. Improvement of salt tolerance in Stevia rebaudiana by co-application of endophytic fungi and exogenous spermidine. Ind. Crops Prod. 177, 114443. DOI: https://doi.org/10.1016/j.indcrop.2021.114443
Shaaban M, Abid M, Peng Q, 2013. Short Term Influence of Gypsum, Farm Manure and Commercial Humic Acid on Physical Properties of Salt Affected Soil in Rice Paddy System. Journal of the Chemical Society of Pakistan, 34.
Singh R P, Jha P N, 2016. A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Front. Plant Sci. 7, 1890. DOI: https://doi.org/10.3389/fpls.2016.01890
Singh A, Panda S N, 2012. Effect of saline irrigation water on mustard (Brassica Juncea) crop yield and soil salinity in a semiarid area of North India. Expl. Agric. 48, 99–110. DOI: https://doi.org/10.1017/S0014479711000780
Soldan R, Mapelli F, Crotti E, Schnell S, Daffonchio D, Marasco R ... Cardinale, M. (2019). Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiol. Res. 223, 33-43. DOI: https://doi.org/10.1016/j.micres.2019.03.008
Sun H, Lu H, Chu L, Shao H, Shi W, 2017. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sci. Total Environ. 575, 820-825. DOI: https://doi.org/10.1016/j.scitotenv.2016.09.137
Tedeschi A, Menenti M, 2002. Simulation studies of long-term saline water use: Model validation and evaluation of schedules. Agric. Water Manag. 54, 123–157. DOI: https://doi.org/10.1016/S0378-3774(01)00140-8
Tedeschi A, Dell’Aquila R, 2005. Effects of irrigation with saline waters, at different concentrations, on soil physical and chemical characteristics. Agric. Water Manag. 77, 308–322. DOI: https://doi.org/10.1016/j.agwat.2004.09.036
Tedeschi A, Menenti M, Tedeschi P, Wang T, Xue X, Basile A, ... Sorrentino G. Design and evaluation of saline irrigation schedules to cope with droughts and scarce fresh water. Proceeding of 22nd European Regional Conference: ”Water resources management and irrigation and drainage systems development in the European environment”, Pavia 2-6/09/2007.
Tedeschi A, Lavini A, Basile A, Mele G, Menenti M. Highlights of an experimental study on the vulnerability of a soil-crop system to drought and saline water. In Proceedings of the Congress of the European Society of Agronomy-Multi-functional Agriculture-Agriculture as a Resource for Energy and Environmental Preservation, Bologna, Italy, 15–19 September 2008; Ital. J. Agron. 3, 165–166.
Tedeschi A, Menenti M, Xue X, Basile A, Huang C, Zong L, De Mascellis R, Orefice N, 2008. Field and Laboratory Studies Towards Better Use of Saline Irrigation Water in NW China. "International conference irrigation in Mediterranean agriculture: Challenges and innovation for the next decades. “ (Eds: Santini A, Lamaddalea N, Severino G, Palladino M) SERIE A: Mediterranean Seminars; 2008: Number 84-CIHEAM; G.R.U.S.I. Naples 17-18 June 2008. ISSN:1016-121X-ISBN:2-85352-408-6.
Tedeschi A, Zong L, Huang C, Vitale L, Volpe M G, Xue, X 2017. Effect of salinity on growth parameters, soil water potential and ion composition in Cucumis melo cv. Huanghemi in North-Western China. J. Agron. Crop Sci. 203, 41–55 DOI: https://doi.org/10.1111/jac.12161
Tedeschi A, 2020. Irrigated Agriculture on Saline Soils: A Perspective. Agronomy 10, 11, 1630. DOI: https://doi.org/10.3390/agronomy10111630
Tester M, 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91, 503–527. DOI: https://doi.org/10.1093/aob/mcg058
Tomaz A, Palma P, Alvarenga P, Conceição Gonçalves M, 2020. Soil salinity risk in a climate change scenario and its effect on crop yield. In: Climate Change and Soil Interactions. Editor(s), Majeti Narasimha Vara Prasad, Marcin Pietrzykowski, Elsevier, pp. 351-396. DOI: https://doi.org/10.1016/B978-0-12-818032-7.00013-8
Vita F, Ghignone S, Bazihizina N, Rasouli F, Sabbatini L, Kiani-Pouya A, Kiferle C, Shabala S, Balestrini R, Mancuso S, 2021. Early responses to salt stress in quinoa genotypes with opposite behavior. Physiol. Plant. 173, 1392–1420. DOI: https://doi.org/10.1111/ppl.13425
Walitang D I, Kim C G, Kim K, Kang Y, Kim Y K Sa T, 2018. The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars. BMC Plant Biol. 18, 1-16. DOI: https://doi.org/10.1186/s12870-018-1261-1
Xiukang W, Yingying X, 2016. Evaluation of the effect of irrigation and fertilization by drip fertigation on tomato yield and water use efficiency in greenhouse. Int. J Agron. 2016, 3961903. DOI: https://doi.org/10.1155/2016/3961903
Zaman M, Shahid S A, Heng L, 2018. Guideline for Salinity Assessment, Mitigation and Adaptation using Nuclear and Related Techniques. Springer Nature. ISBN: 978-3-319-96189-7. DOI: https://doi.org/10.1007/978-3-319-96190-3
Zheng J, Feng Y, Yu K, Wang Z, Yuan X, 2002. Irrigation with brackish water under straw mulching. Trans. Chin. Soc. Agric. Eng. 18, 26–31.

How to Cite

Tedeschi, A. ., Schillaci, M., & Balestrini, R. (2023). Mitigating the impact of soil salinity: recent developments and future strategies. Italian Journal of Agronomy, 18(2). https://doi.org/10.4081/ija.2023.2173