The ability of crop models to predict soil organic carbon changes in a maize cropping system under contrasting fertilization and residues management: Evidence from a long-term experiment

Published: 30 December 2022
Abstract Views: 1034
PDF: 367
HTML: 20
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Antonio Pulina Department of Agricultural Sciences and Desertification Research Centre (NRD), University of Sassari, Sassari, Italy.
  • Roberto Ferrise roberto.ferrise@unifi.it Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy.
  • Laura Mula Department of Agricultural Sciences and Desertification Research Centre (NRD), University of Sassari, Sassari, Italy.
  • Lorenzo Brilli National Research Council of Italy, Institute of Bioeconomy (CNR-IBE), Sesto Fiorentino (FI), Italy.
  • Luisa Giglio Research Centre Agriculture and Environment, Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Bari, Italy.
  • Ileana Iocola Research Centre Agriculture and Environment, Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Rome, Italy.
  • Domenico Ventrella Research Centre Agriculture and Environment, Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Bari, Italy.
  • Laura Zavattaro Department of Veterinary Sciences, University of Turin, Grugliasco (TO), Italy.
  • Carlo Grignani Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), Italy.
  • Pier Paolo Roggero Department of Agricultural Sciences and Desertification Research Centre (NRD), University of Sassari, Sassari, Italy.

This study assesses the ability of an ensemble of crop models (MME) to predict the impacts of fertilization and crop residue management on soil organic carbon (SOC) and aboveground biomass (AGB) in a long-term experiment (LTE) based on continuous maize cropping systems. Data from a LTE in Northern Italy were used. Treatments included continuous grain (MG) or silage (MS) maize, fertilized with mineral, cattle slurry, and farmyard manure. The MME median resulted the best predictor of the observed values. Models performance was better when simulating MG than MS, and for crops treated with mineral compared to organic fertilizers. The ability to predict the dynamics of SOC was affected by the model used and by the year × residues management and year × fertilizer interactions. The model and the residue × fertilizer interaction affected the ability to simulate AGB dynamics. Results showed that a MME can effectively predict the long-term dynamics of SOC and maize crop production under contrasting fertilization and crop residue management, and thus their potential for climate change mitigation. The uncertainty in the simulation of SOC is related to the model routines simulating SOC partitioning and to the complexity of the interactions between management factors over time.

Highlights
- A crop model ensemble was compiled to simulate soil organic carbon and maize aboveground biomass dynamics in a long-term experiment.
- The performances of stand-alone models and their ensemble were assessed under contrasting fertilization and crop residue management.
- The multi-model ensemble using the median value of simulation was the best predictor of the variables observed in the long-term experiment.
- Improved performances in simulations were observed when crop residues were incorporated into the soil, regardless of the fertilization management.
- The uncertainty in SOC simulation increased over time for cropping systems with silage maize and organic fertilization.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Álvaro-Fuentes J, Paustian K, 2011. Potential soil carbon sequestration in a semiarid Mediterranean agroecosystem under climate change: quantifying management and climate effects. Plant. Soil. 338:261-72. DOI: https://doi.org/10.1007/s11104-010-0304-7
Basso B, Dumont B, Maestrini B, Shcherbak I, Robertson GP, Porter JR, Smith P, Paustian K, Grace PR, Asseng S, Bassu S, Biernath C, Boote KJ, Cammarano D, De Sanctis G, Durand JL, Ewert F, Gayler S, Hyndman DW, Kent J, Martre P, Nendel C, Priesack E, Ripoche D, Ruane AC, Sharp J, Thorburn PJ, Hatfield JL, Jones JW, Rosenzweig C, 2018. Soil Organic Carbon and Nitrogen Feedbacks on Crop Yields under Climate Change. Agric. Environ. Lett. 3. DOI: https://doi.org/10.2134/ael2018.05.0026
Basso B, Ritchie JT, 2015. Simulating crop growth and biogeochemical fluxes in response to land management using the SALUS model. Oxford: University Press Oxford.
Bassu S, Brisson N, Durand JL, Boote K, Lizaso J, Jones JW, Rosenzweig C, Ruane AC, Adam M, Baron C, Basso B, Biernath C, Boogaard H, Conijn S, Corbeels M, Deryng D, De Sanctis G, Gayler S, Grassini P, Hatfield J, Hoek S, Izaurralde C, Jongschaap R, Kemanian AR, Kersebaum KC, Kim SH, Kumar NS, Makowski D, Muller C, Nendel C, Priesack E, Pravia MV, Sau F, Shcherbak I, Tao F, Teixeira E, Timlin D, Waha K, 2014. How do various maize crop models vary in their responses to climate change factors? Glob. Chang. Biol. 20:2301-20. DOI: https://doi.org/10.1111/gcb.12520
Bertora C, Zavattaro L, Sacco D, Monaco S, Grignani C, 2009. Soil organic matter dynamics and losses in manured maize-based forage systems. Eur. J. Agron. 30:177-86. DOI: https://doi.org/10.1016/j.eja.2008.09.006
Bolinder MA, Crotty F, Elsen A, Frac M, Kismányoky T, Lipiec J, Tits M, Tóth Z, Kätterer T, 2020. The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: a synthesis of reviews. Mitig. Adapt. Strat. Global Change 25:929-52. DOI: https://doi.org/10.1007/s11027-020-09916-3
Cai A, Xu M, Wang B, Zhang W, Liang G, Hou E, Luo Y, 2019. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Till. Res. 189:168-75. DOI: https://doi.org/10.1016/j.still.2018.12.022
Cayuela ML, Aguilera E, Sanz-Cobena A, Adams DC, Abalos D, Barton L, Ryals R, Silver WL, Alfaro MA, Pappa VA, Smith P, Garnier J, Billen G, Bouwman L, Bondeau A, Lassaletta L, 2017. Direct nitrous oxide emissions in Mediterranean climate cropping systems: Emission factors based on a meta-analysis of available measurement data. Agric. Ecosyst. Environ. 238:25-35. DOI: https://doi.org/10.1016/j.agee.2016.10.006
Chenu C, Angers DA, Barré P, Derrien D, Arrouays D, Balesdent J, 2019. Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations. Soil Till. Res. 188:41-52. DOI: https://doi.org/10.1016/j.still.2018.04.011
Chowdhury S, Bolan N, Farrell M, Sarkar B, Sarker JR, Kirkham MB, Hossain MZ, Kim G-H, 2021. Role of cultural and nutrient management practices in carbon sequestration in agricultural soil. Chapter Two. In: D.L. Sparks (Ed.), Adv. Agron. Academic Press, pp. 131-196. DOI: https://doi.org/10.1016/bs.agron.2020.10.001
Cui S, Liang S, Zhang X, Li Y, Liang W, Sun L, Wang J, Martijn Bezemer T, Li Q, 2018. Long-term fertilization management affects the C utilization from crop residues by the soil micro-food web. Plant. Soil. 429:335-48. DOI: https://doi.org/10.1007/s11104-018-3688-4
Ehrhardt F, Soussana JF, Bellocchi G, Grace P, McAuliffe R, Recous S, Sándor R, Smith P, Snow V, de Antoni Migliorati M, Basso B, Bhatia A, Brilli L, Doltra J, Dorich CD, Doro L, Fitton N, Giacomini SJ, Grant B, Harrison MT, Jones SK, Kirschbaum MUF, Klumpp K, Laville P, Léonard J, Liebig M, Lieffering M, Martin R, Massad RS, Meier E, Merbold L, Moore AD, Myrgiotis V, Newton P, Pattey E, Rolinski S, Sharp J, Smith WN, Wu L, Zhang Q, 2017. Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2O emissions. Global Change Biol. 24:e603-16. DOI: https://doi.org/10.1111/gcb.13965
Farina R, Sandor R, Abdalla M, Alvaro-Fuentes J, Bechini L, Bolinder MA, Brilli L, Chenu C, Clivot H, De Antoni Migliorati M, Di Bene C, Dorich CD, Ehrhardt F, Ferchaud F, Fitton N, Francaviglia R, Franko U, Giltrap DL, Grant BB, Guenet B, Harrison MT, Kirschbaum MUF, Kuka K, Kulmala L, Liski J, McGrath MJ, Meier E, Menichetti L, Moyano F, Nendel C, Recous S, Reibold N, Shepherd A, Smith WN, Smith P, Soussana JF, Stella T, Taghizadeh-Toosi A, Tsutskikh E, Bellocchi G, 2021. Ensemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soils. Glob. Chang. Biol. 27:904-28. DOI: https://doi.org/10.1111/gcb.15441
Farina R, Seddaiu G, Orsini R, Steglich E, Roggero PP, Francaviglia R, 2011. Soil carbon dynamics and crop productivity as influenced by climate change in a rainfed cereal system under contrasting tillage using EPIC. Soil Till. Res. 112:36-46. DOI: https://doi.org/10.1016/j.still.2010.11.002
Follett RF, 2001. Soil management concepts and carbon sequestration in cropland soils. Soil Till. Res. 61:77-92. DOI: https://doi.org/10.1016/S0167-1987(01)00180-5
Fox DG, 1981. Judging air quality model performance. Bull. Am. Meteorol. Soc. 62:599-609. DOI: https://doi.org/10.1175/1520-0477(1981)062<0599:JAQMP>2.0.CO;2
Ginaldi F, Bindi M, Marta AD, Ferrise R, Orlandini S, Danuso F, 2016. Interoperability of agronomic long-term experiment databases and crop model intercomparison: the Italian experience. Eur. J. Agron. 77:209-222. DOI: https://doi.org/10.1016/j.eja.2016.02.007
Greenwood DJ, Neeteson JJ, Draycott A, 1985. Response of potatoes to N fertilizer: Dynamic model. Plant. Soil. 85:185-203. DOI: https://doi.org/10.1007/BF02139623
Grignani C, Zavattaro L, Sacco D, Monaco S, 2007. Production, nitrogen and carbon balance of maize-based forage systems. Eur. J. Agron. 26:442-53. DOI: https://doi.org/10.1016/j.eja.2007.01.005
Hao X, Han X, Wang S, Li L-J, 2022. Dynamics and composition of soil organic carbon in response to 15 years of straw return in a Mollisol. Soil Till. Res. 215. DOI: https://doi.org/10.1016/j.still.2021.105221
Harris GR, Collins M, Sexton DMH, Murphy JM, Booth BBB, 2010. Probabilistic projections for 21st century European climate. Nat. Hazards Earth Syst. Sci. 10:2009-20. DOI: https://doi.org/10.5194/nhess-10-2009-2010
Hoogenboom G, Porter CH, Boote KJ, Shelia V, Wilkens PW, Singh U, White JW, Asseng S, Lizaso JI, Moreno LP, 2019. The DSSAT crop modeling ecosystem Advances in crop modelling for a sustainable agriculture. Burleigh Dodds Science Publishing, pp. 173-216. DOI: https://doi.org/10.19103/AS.2019.0061.10
Iocola I, Bassu S, Farina R, Antichi D, Basso B, Bindi M, Dalla Marta A, Danuso F, Doro L, Ferrise R, Giglio L, Ginaldi F, Mazzoncini M, Mula L, Orsini R, Corti G, Pasqui M, Seddaiu G, Tomozeiu R, Ventrella D, Villani G, Roggero PP, 2017. Can conservation tillage mitigate climate change impacts in Mediterranean cereal systems? A soil organic carbon assessment using long-term experiments. Eur. J. Agron. 90:96-107. DOI: https://doi.org/10.1016/j.eja.2017.07.011
Johnston AE, Poulton PR, 2018. The importance of long-term experiments in agriculture: their management to ensure continued crop production and soil fertility; the Rothamsted experience. Eur. J. Soil Sci. 69:113-25. DOI: https://doi.org/10.1111/ejss.12521
Lal R, 2016. Beyond COP 21: potential and challenges of the ‘4 per Thousand’ initiative. J. Soil Water Conserv. 71(1):20A-25A. DOI: https://doi.org/10.2489/jswc.71.1.20A
Lai R, Arca P, Lagomarsino A, Cappai C, Seddaiu G, Demurtas CE, Roggero PP, 2017. Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system. Catena 151:202-12. DOI: https://doi.org/10.1016/j.catena.2016.12.013
Lehtinen T, Schlatter N, Baumgarten A, Bechini L, Krüger J, Grignani C, Zavattaro L, Costamagna C, Spiegel H, 2014. Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils. Soil Use Manage. 30:524-538. DOI: https://doi.org/10.1111/sum.12151
Lenth R, 2018. emmeans: estimated marginal means, aka least-squares means (online). Available from: https://CRAN.R-project.org/package=emmeans
Lin H, Zhou M, Zeng F, Xu P, Ma S, Zhang B, Li Z, Wang Y, Zhu B, 2022. How do soil organic carbon pool, stock and their stability respond to crop residue incorporation in subtropical calcareous agricultural soils? Agric. Ecosyst. Environ. 332. DOI: https://doi.org/10.1016/j.agee.2022.107927
Lopez-Lopez G, Lobo MC, Negre A, Colombas M, Rovira JM, Martorell A, Reolid C, Sastre-Conde I, 2012. Impact of fertilization practices on soil respiration, as measured by the metabolic index of short-term nitrogen input behaviour. J. Environ. Manage. 113:517-26. DOI: https://doi.org/10.1016/j.jenvman.2012.03.010
Maillard E, Angers DA, 2014. Animal manure application and soil organic carbon stocks: a meta-analysis. Global Change Biol. 20:666-79. DOI: https://doi.org/10.1111/gcb.12438
Montanarella L, 2020. Soils and the European green deal. Ital. J. Agron. 15:262-6, 1761. DOI: https://doi.org/10.4081/ija.2020.1761
Noor MA, Nawaz MM, Ma W, Zhao M, 2021. Wheat straw mulch improves summer maize productivity and soil properties. Ital. J. Agron. 16:1-8, 1623. DOI: https://doi.org/10.4081/ija.2020.1623
Parton WJ, Schimel DS, Cole CV, Ojima DS, 1987. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci. Soc. Am. J. 51:1173-9. DOI: https://doi.org/10.2136/sssaj1987.03615995005100050015x
Paustian K, Parton WJ, Persson J, 1992. Modeling soil organic matter in organic‐amended and nitrogen‐fertilized long‐term plots. Soil Sci. Soc. Am. J. 56:476-88. DOI: https://doi.org/10.2136/sssaj1992.03615995005600020023x
Pittelkow CM, Liang X, Linquist BA, van Groenigen KJ, Lee J, Lundy ME, van Gestel N, Six J, Venterea RT, van Kessel C, 2015. Productivity limits and potentials of the principles of conservation agriculture. Nature 517:365-8. DOI: https://doi.org/10.1038/nature13809
Poeplau C, Reiter L, Berti A, Kätterer T, 2017. Qualitative and quantitative response of soil organic carbon to 40 years of crop residue incorporation under contrasting nitrogen fertilization regimes. Soil Res. 55. DOI: https://doi.org/10.1071/SR15377
Poulton P, Johnston J, Macdonald A, White R, Powlson D, 2018. Major limitations to achieving ‘4 per 1000’ increases in soil organic carbon stock in temperate regions: evidence from long-term experiments at Rothamsted Research, United Kingdom. Glob. Chang. Biol. 24:2563-84. DOI: https://doi.org/10.1111/gcb.14066
Powlson DS, Whitmore AP, Goulding KWT, 2011. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur. J. Soil Sci. 62:42-55. DOI: https://doi.org/10.1111/j.1365-2389.2010.01342.x
Pulina A, Lai R, Seddaiu G, Bertora C, Rizzu M, Grignani C, Roggero PP, 2018. Global warming potential of a Mediterranean irrigated forage system: Implications for designing the fertilization strategy. Eur. J. Agron. 98:25-36. DOI: https://doi.org/10.1016/j.eja.2018.05.002
R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available from: https://cran.r-project.org/doc/manuals/fullrefman.pdf
Riggers C, Poeplau C, Don A, Bamminger C, Höper H, Dechow R, 2019. Multi-model ensemble improved the prediction of trends in soil organic carbon stocks in German croplands. Geoderma 345:17-30. DOI: https://doi.org/10.1016/j.geoderma.2019.03.014
Risberg K, Cederlund H, Pell M, Arthurson V, Schnurer A, 2017. Comparative characterization of digestate versus pig slurry and cow manure - Chemical composition and effects on soil microbial activity. Waste Manag. 61:529-38. DOI: https://doi.org/10.1016/j.wasman.2016.12.016
Saffih-Hdadi K, Mary B, 2008. Modeling consequences of straw residues export on soil organic carbon. Soil Biol. Biochem. 40:594-607. DOI: https://doi.org/10.1016/j.soilbio.2007.08.022
Sándor R, Barcza Z, Acutis M, Doro L, Hidy D, Köchy M, Minet J, Lellei-Kovács E, Ma S, Perego A, Rolinski S, Ruget F, Sanna M, Seddaiu G, Wu L, Bellocchi G, 2017. Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance. Eur. J. Agron. 88:22-40. DOI: https://doi.org/10.1016/j.eja.2016.06.006
Sanz-Cobena A, Lassaletta L, Aguilera E, Prado Ad, Garnier J, Billen G, Iglesias A, Sánchez B, Guardia G, Abalos D, Plaza-Bonilla D, Puigdueta-Bartolomé I, Moral R, Galán E, Arriaga H, Merino P, Infante-Amate J, Meijide A, Pardo G, Álvaro-Fuentes J, Gilsanz C, Báez D, Doltra J, González-Ubierna S, Cayuela ML, Menéndez S, Díaz-Pinés E, Le-Noë J, Quemada M, Estellés F, Calvet S, van Grinsven HJM, Westhoek H, Sanz MJ, Gimeno BS, Vallejo A, Smith P, 2017. Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agric. Ecosyst. Environ. 238:5-24. DOI: https://doi.org/10.1016/j.agee.2016.09.038
Shahbaz M, Kuzyakov Y, Sanaullah M, Heitkamp F, Zelenev V, Kumar A, Blagodatskaya E, 2017. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds. Biol. Fertil. Soils 53:287-301. DOI: https://doi.org/10.1007/s00374-016-1174-9
Smith P, Smith JU, Powlson DS, McGill WB, Arah JRM, Chertov OG, Coleman K, Franko U, Frolking S, Jenkinson DS, Jensen LS, Kelly RH, Klein-Gunnewiek H, Komarov AS, Li C, Molina JAE, Mueller T, Parton WJ, Thornley JHM, Whitmore AP, 1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81:153-225. DOI: https://doi.org/10.1016/S0016-7061(97)00087-6
Smith WN, Grant BB, Campbell CA, McConkey BG, Desjardins RL, Kröbel R, Malhi SS, 2012. Crop residue removal effects on soil carbon: measured and inter-model comparisons. Agric. Ecosyst. Environ. 161:27-38. DOI: https://doi.org/10.1016/j.agee.2012.07.024
Soil Survey Staff, 2014. Keys to soil taxonomy, 12th edition. USDA-Natural Resources Conservation Service, Washington, DC, USA.
Stella T, Mouratiadou I, Gaiser T, Berg-Mohnicke M, Wallor E, Ewert F, Nendel C, 2019. Estimating the contribution of crop residues to soil organic carbon conservation. Environ. Res. Lett. 14. DOI: https://doi.org/10.1088/1748-9326/ab395c
Stockle C, Higgins S, Kemanian A, Nelson R, Huggins D, Marcos J, Collins H, 2012. Carbon storage and nitrous oxide emissions of cropping systems in eastern Washington: a simulation study. J. Soil Water Conserv. 67:365-77. DOI: https://doi.org/10.2489/jswc.67.5.365
Stöckle CO, Donatelli M, Nelson R, 2003. CropSyst, a cropping systems simulation model. Eur. J. Agron. 18:289-307. DOI: https://doi.org/10.1016/S1161-0301(02)00109-0
Stöckle CO, Martin SA, Campbell GS, 1994. CropSyst, a cropping systems simulation model: Water/nitrogen budgets and crop yield. Agr. Syst. 46:335-59. DOI: https://doi.org/10.1016/0308-521X(94)90006-2
Thiagarajan A, Liang C, MacDonald JD, Smith W, VandenBygaart AJ, Grant B, Krobel R, Janzen H, Zhang T, McConkey B, Ma B, Bremer E, Yang X, Cerkowniak D, Fan J, 2022. Prospects and challenges in the use of models to estimate the influence of crop residue input on soil organic carbon in long-term experiments in Canada. Geoderma Regional 30. DOI: https://doi.org/10.1016/j.geodrs.2022.e00534
Tian K, Zhao Y, Xu X, Hai N, Huang B, Deng W, 2015. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis. Agric. Ecosyst. Environ. 204:40-50. DOI: https://doi.org/10.1016/j.agee.2015.02.008
Wang Y, Hu C, Dong W, Li X, Zhang Y, Qin S, Oenema O, 2015. Carbon budget of a winter-wheat and summer-maize rotation cropland in the North China Plain. Agric. Ecosyst. Environ. 206:33-45. DOI: https://doi.org/10.1016/j.agee.2015.03.016
West TO, Post WM, 2002. Soil organic carbon sequestration rates by tillage and crop rotation. Soil Sci. Soc. Am. J. 66:1930-46. DOI: https://doi.org/10.2136/sssaj2002.1930
Williams JR, 1995. The EPIC model. Comput. Models Watershed Hydrol. 909-1000.
Willmott CJ, Wicks DE, 1980. An empirical method for the spatial interpolation of monthly precipitation within California. Phys. Geogr. 1:59-73. DOI: https://doi.org/10.1080/02723646.1980.10642189
Zavattaro L, Assandri D, Grignani C, 2016. Achieving legislation requirements with different nitrogen fertilization strategies: results from a long-term experiment. Eur. J. Agron. 77:199-208. DOI: https://doi.org/10.1016/j.eja.2016.02.004
Zhang X, Xin X, Yang W, Ding S, Ren G, Li M, Zhu A, 2021. Soil respiration and net carbon flux response to long-term reduced/no-tillage with and without residues in a wheat-maize cropping system. Soil Till. Res. 214. DOI: https://doi.org/10.1016/j.still.2021.105182

How to Cite

Pulina, A., Ferrise, R. ., Mula, L., Brilli, L., Giglio, L., Iocola, I., Ventrella, D., Zavattaro, L., Grignani, C., & Roggero, P. P. (2022). The ability of crop models to predict soil organic carbon changes in a maize cropping system under contrasting fertilization and residues management: Evidence from a long-term experiment. Italian Journal of Agronomy, 17(4). https://doi.org/10.4081/ija.2022.2179